Selecting an Interest Rate for SelectingComparing Projects - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

Selecting an Interest Rate for SelectingComparing Projects

Description:

Selecting an Interest Rate for Selecting/Comparing Projects. Generally ... Assume you can ALWAYS make the interest rate -- so your project must beat it to ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 49
Provided by: josephc
Category:

less

Transcript and Presenter's Notes

Title: Selecting an Interest Rate for SelectingComparing Projects


1
Selecting an Interest Rate for Selecting/Comparing
Projects
  • Generally specified by management
  • MARR Minimum Attractive Rate of Return, defines
    minimum amount you are willing to make on an
    investment
  • Assume you can ALWAYS make the interest rate --
    so your project must beat it to be worth the
    investment.
  • PW is a measure of worth above the baseline

2
Selecting an Interest Rate
  • Interest rate represents an opportunity cost for
    funds
  • The rate should, at a minimum, define the cost of
    capital -- that is, the cost of funds
  • Additional percentage points above cost of
    capital represent desired profit margin

3
Is MARR Important
  • Is project selection sensitive to MARR?
  • If you change MARR, might you change your mind as
    to which project is better? (yes)
  • Sensitivity analysis is always a good idea

4
Example
5
Sources of Capital
  • Loans
  • Traditional bank funding
  • Assets offered as collateral for possible
    defaults
  • Investment capital firm
  • Future contracts or company ownership offered
  • Bond Issue
  • Stock Issue

6
Loans
  • Financial instrument in which one borrows money
    and pays it back over time according to some
    predefined arrangement.

7
Loan Terminology
  • Principal Amount borrowed.
  • Remaining Balance Remaining principal owed.
  • True Cost of Loan Interest rate that equates
    all payments to principal loaned.

8
Payment Plan 1 Equal Principal
  • Example 10,000 at 10 per year, 5 years

9
Payment Plan 1 Equal Principal
10
Plan 2 Equal Total Payments
  • Example 10,000 at 10 per year, 5 years

11
Payment Plan 2 Equal Total
12
Plan 1 versus Plan 2
  • Total Principal Paid is the same.
  • Equal Principal Payments
  • Total Interest Paid 3,000
  • Time Zero Value of TP (10) 10,000
  • Equal Total Payments
  • Total Interest Paid 3,189
  • Time Zero Value of TP (10) 10,000

13
Plan 3 Specially Designed Plan
  • Ex Increasing Principal Payment Plan

n LBn-1 IPn PPn TPn 1 10,000 1,000 1,000 2,00
0 2 9,000 900 2,000 2,900 3 7,000 700 3,000
3,700 4 4,000 400 4,000 4,400
14
Plan Statistics
  • Total Principal Paid is the same.
  • Total Interest Paid 3,000
  • Time Zero Value of TP (10) 10,000
  • Same as others!
  • Why have different plans?
  • People have budgets.
  • Payments only equate at 10 interest.

15
Plan 3 Specially Designed Plan
  • Any payment scheme can be completed.
  • Must compute true cost of loan. (15.15)

16
Bonds
  • Financial instrument in which companies borrow
    money from investors. Investors are provided
    coupon payments and returned capital at end.

17
Bond Terminology
  • Principal Face value of bond.
  • Current Yield Interest Payment/Price of Bond
    (Face Value at initial offering)
  • Yield to Maturity Interest rate the bond earns
    (payments plus return of face value).

18
Bond Example
  • If a bond holder wants to sell their bond, they
    can do so on the market.

19
Bond Example
IBM 5¼ 09 5.1 4 106.13 0.88
Coupon Rate 5.25 Expires 2009 Current Yield
5.1 Volume 4M Price 106.13 ( of face) Change
0.88
20
Bond Example
  • Lets assume this is a 10,000 bond.
  • The current yield is
  • (10,0005.25)/10,613 4.9
  • Assume next coupon payment in 6 mos.
  • If you buy it, your cash flow diagram is

21
Bond Example
  • Lets assume this is a 10,000 bond. If you buy
    it, your cash flow diagram is

0
Pay 1.061310,000 for the bond.
10613
22
Bond Example
  • Lets assume this is a 10,000 bond. If you buy
    it, your cash flow diagram is

A
A
A
A
262.50
A
0
03
04
09
Receive bi-annual payments Coupon Rate
5.25 Payment .0525 10,000 525 Paid every
6-months 525/2 262.50
10613
23
Bond Example
  • Lets assume this is a 10,000 bond. If you buy
    it, your cash flow diagram is

10000
A
A
A
A
262.50
A
0
03
04
09
Company returns the principal amount (face value)
to you when the bond reaches maturity.
10613
24
Bond Example
  • Lets assume this is a 10,000 bond. If you buy
    it, your cash flow diagram is

10000
A
A
A
A
262.50
A
0
03
04
09
To calculate Yield to Maturity, find the rate
that equates outflows with inflows
10613
25
Bond Example
  • Lets assume this is a 10,000 bond. If you buy
    it, your cash flow diagram is

10000
A
A
A
A
262.50
A
0
03
04
09
10613
These roughly equate at isa2.53 which is ia
1.02532-15.12
26
Bond Market and Rates
  • New 10,000 bonds are issued on the market with a
    current yield of 6.
  • One year later, a similar company issues its
    10,000 bond on the market with a yield of 6.5.
  • Would you buy the old bond on the market?

27
Bond Market and Rates
  • New 10,000 bonds are issued on the market with a
    current yield of 6.
  • One year later, a similar company issues its
    10,000 bond on the market with a yield of 6.5.
  • Would you buy the old bond on the market?

As interest rates increase, prices of bonds with
lower rates drop.
28
Bond Market and Rates
  • If rates go up, lower interest rate bond values
    drop
  • Buy them at discounts.
  • If rates go down, higher interest rate bond
    values rise
  • Buy them at premiums.

29
Other Notes on Bonds
  • Many entities sell bonds
  • Companies
  • Governments
  • Municipalities
  • Government or Municipal Bonds generally have tax
    breaks
  • Interest rates are not only input to price
  • Bonds are rated for safety
  • AAA versus BBB

30
Other Bond Variants
  • Zero Coupon Bonds
  • Savings Bonds
  • Similar in figure to zero coupon, as principal
    and accrued interest paid at end.
  • Principal Interest Payment Bonds
  • Specialized plans. Like loans.

X
31
Stock Issues
  • Company issues (sells) stock on the market.
  • Company becomes a public entity
  • Company must adhere to wishes of shareholders
  • Directors relinquish liability

32
Stock Issues
  • Company often keeps a number of shares when
    issuing stock
  • If stock rises, their treasure chest grows
  • Can use stock in acquisitions of other companies
    or sell later to raise cash

33
Cost of Capital
  • Hard to evaluate cost of capital with respect
    to stock issues.
  • If company pays a dividend, then the yield can be
    viewed as the cost of capital (or at least a
    lower bound).
  • If no dividend, companies use the growth rate of
    the company as a measure of the cost of capital.

34
Depreciation
  • Definition 1 The allocation of the cost of an
    asset over a period of time for accounting and
    tax purposes.Definition 2 A decline in the
    value of a property due to general wear and tear
    or obsolescence opposite of appreciation

35
To calculate depreciation you must know
  • How much the asset cost (including all costs
    necessary to make the asset operational),
  • How long the asset can reasonably be expected to
    last (its useful life)
  • Salvage value (if any) at the end of its useful
    life.
  • There are certain conventions for items such as
    computers, vehicles, furniture, buildings, and
    other fixed assets

36
(No Transcript)
37
Half Year Convention
  • Assume half a years depreciation in the year the
    asset was purchased.
  • Example
  • 5 year asset, Straight Line Depreciation
  • Year 1 2 3 4 5 6
  • Depr 10 20 20 20 20 10

38
 
MACRS
Modified Accelerated Cost Recovery System
39
ATCF Examples
  • A 5-year property class asset costs 600,000 and
    has no salvage value after 6 years. The asset is
    expected to produce annual revenues of 1 M with
    annual labor and material expenses of 200K and
    100K respectively. Using an i10 and an
    effective tax rate of 34, compare ATCF
  • Alternative SL Depreciation
  • MACRS tables Depreciation
  • Sell asset after year six for 10K
  • Finance 500K of purchase price

40
Alternative SL Depreciation
41
MACRS Depreciation
42
MACRS Depreciation with Gain
43
MACRS with Loan (EPP)
44
Equal Prin. Payments Loan
  • MARR 10
  • Loan 5 NPV 1.65 M
  • Loan 10 NPV 1.61 M
  • Loan 20 NPV 1.53 M

45
MACRS with Loan (ETP)
46
Equal Total Payments Loan
  • MARR 10
  • Loan 5 NPV 1.65 M
  • Loan 10 NPV 1.61 M
  • Loan 20 NPV 1.53 M
  • (There are differences, out at the 1,000 level.)

47
MACRS with Bond
48
Bond Results
  • MARR 10
  • Yield 5 NPV 1.7 M
  • Yield 10 NPV 1.63 M
  • Yield 20 NPV 1.51 M
Write a Comment
User Comments (0)
About PowerShow.com