Semantic Shift for Unsupervised Categorization and Localization - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Semantic Shift for Unsupervised Categorization and Localization

Description:

Semantic Shift for Unsupervised Categorization and Localization – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 31
Provided by: andre4
Category:

less

Transcript and Presenter's Notes

Title: Semantic Shift for Unsupervised Categorization and Localization


1
Semantic Shift for Unsupervised Categorization
and Localization
  • David Liu and Tsuhan Chen
  • Electrical and Computer Engineering Department
  • Carnegie Mellon University

2
Parts-based Artworks
  • As long as the parts are present, the exact
    position does not matter too much

Picasso, 1943
Caltech face dataset
Dali, 1936
3
Overview
  • Probabilistic Latent Semantic Analysis (PLSA)
  • Incorporating spatial information
  • Prior work
  • Proposed method Semantic-Shift
  • Results

4
Goal Unsupervised Image Categorization
Caltech face background dataset
5
Goal Unsupervised Image Categorization
UIUC car dataset
6
Documents and Images Are Analogous
Documents
Images
Topic(Sport, Health, )
Topic (Face, Car, )
Word
Visual word
7
Visual Words
Difference of Gaussian interest point detector
SIFT descriptor (Lowe 99)
Vector quantization
8
Bag of Words Representation
count
words
9
A Categorization Model
  • Text categorization (Nigam et al. 98)
  • Image categorization (Csurka et al. 04)

count
words
words
w
w
zface
zcar
w
w
Topic Appearance
w
w
10
The Effect of Background Clutter
11
Probabilistic Latent Semantic Analysis (PLSA)
  • Hofmann 01, Monay and Gatica-Perez 04, Sivic et
    al. 05, Quelhas et al. 05
  • Models complex scenes

z
w
d
z
w
Document Characteristic
Topic Appearance
doc 1
z
w
  • Inference
  • Categorization
  • Segmentation
  • Learning Maximum likelihood estimation using EM
    algorithm

z
w
d
z
w
doc 2
z
w
12
PLSA Difficulties
13
Incorporating Spatial Information Prior Work
Liu Chen, 06
  • A number of S 10 fixed spatial distributions

position
s
x
d
z
w
Nd
s1 to s9
s10
D
appearance
14
Proposed Method Semantic-Shift
x
image topic word appearance word
position
d
z
w
Nd
D
Topic Appearance
Document Characteristic
Location Semantics
15
Location Semantics
x
d
z
w
Nd
D
  • Assume single foreground object
  • Location semantics
  • Foreground
  • Background Complement of foreground
    distribution

16
Semantic-Shift Algorithm for Learning
Document Characteristic
Topic Appearance
bag of word-position pairs
17
Semantic-Shift Algorithm for Inference
  • Inference
  • Categorization
  • Segmentation

18
Semantic-Shift Demo
Location semantics
posterior
Topic appearance
19
PLSA
Semantic-Shift
20
Categorization Performance on Face Dataset
AUC
PLSA
Semantic-Shift
21
Categorization Performance on Car Dataset
AUC
PLSA
Semantic-Shift
22
Summary
  • Unsupervised categorization and segmentation
  • Several ways of including spatial information
  • Proposed method Semantic Shift
  • Future extensions
  • Multiple topics
  • Multiple objects

23
(No Transcript)
24
Incorporating Spatial Information Prior Work (I)
  • 2D Discriminative Random Fields (Kumar Hebert
    03)
  • Extension to video (Liu Chen 06)

25
Proposed Method Semantic-Shift
  • Appearance analyze across images
  • Location analyze within image
  • Appearance and location estimations are coupled

26
  • Initialize P(zd,w) with PLSA
  • Identify foreground topic
  • Estimate location and scale
  • Semantic-Shift

27
Semantic-Shift
PLSA
PLSA
Semantic Shift
Semantic Shift
LocationSemanticsare shifting
28
x
d
z
w
x
w
z
D
29
Datasets
  • UIUC car dataset
  • Training 550 cropped car images 382 non-car
    images
  • Testing 170 car images 118 non-car images
  • Caltech face background dataset
  • 450 frontal face images of 27 or so unique people
  • 550 images of assorted scenes
  • Half for training, half for testing

30
Categorization Performance on Face Dataset
Write a Comment
User Comments (0)
About PowerShow.com