Title: Semantic Shift for Unsupervised Categorization and Localization
1Semantic Shift for Unsupervised Categorization
and Localization
- David Liu and Tsuhan Chen
- Electrical and Computer Engineering Department
- Carnegie Mellon University
2Parts-based Artworks
- As long as the parts are present, the exact
position does not matter too much
Picasso, 1943
Caltech face dataset
Dali, 1936
3Overview
- Probabilistic Latent Semantic Analysis (PLSA)
- Incorporating spatial information
- Prior work
- Proposed method Semantic-Shift
- Results
4Goal Unsupervised Image Categorization
Caltech face background dataset
5Goal Unsupervised Image Categorization
UIUC car dataset
6Documents and Images Are Analogous
Documents
Images
Topic(Sport, Health, )
Topic (Face, Car, )
Word
Visual word
7Visual Words
Difference of Gaussian interest point detector
SIFT descriptor (Lowe 99)
Vector quantization
8Bag of Words Representation
count
words
9A Categorization Model
- Text categorization (Nigam et al. 98)
- Image categorization (Csurka et al. 04)
count
words
words
w
w
zface
zcar
w
w
Topic Appearance
w
w
10The Effect of Background Clutter
11Probabilistic Latent Semantic Analysis (PLSA)
- Hofmann 01, Monay and Gatica-Perez 04, Sivic et
al. 05, Quelhas et al. 05 - Models complex scenes
z
w
d
z
w
Document Characteristic
Topic Appearance
doc 1
z
w
- Inference
- Categorization
- Segmentation
- Learning Maximum likelihood estimation using EM
algorithm
z
w
d
z
w
doc 2
z
w
12PLSA Difficulties
13Incorporating Spatial Information Prior Work
Liu Chen, 06
- A number of S 10 fixed spatial distributions
position
s
x
d
z
w
Nd
s1 to s9
s10
D
appearance
14Proposed Method Semantic-Shift
x
image topic word appearance word
position
d
z
w
Nd
D
Topic Appearance
Document Characteristic
Location Semantics
15Location Semantics
x
d
z
w
Nd
D
- Assume single foreground object
- Location semantics
- Foreground
- Background Complement of foreground
distribution
16Semantic-Shift Algorithm for Learning
Document Characteristic
Topic Appearance
bag of word-position pairs
17Semantic-Shift Algorithm for Inference
- Inference
- Categorization
- Segmentation
18Semantic-Shift Demo
Location semantics
posterior
Topic appearance
19PLSA
Semantic-Shift
20Categorization Performance on Face Dataset
AUC
PLSA
Semantic-Shift
21Categorization Performance on Car Dataset
AUC
PLSA
Semantic-Shift
22Summary
- Unsupervised categorization and segmentation
- Several ways of including spatial information
- Proposed method Semantic Shift
- Future extensions
- Multiple topics
- Multiple objects
23(No Transcript)
24Incorporating Spatial Information Prior Work (I)
- 2D Discriminative Random Fields (Kumar Hebert
03)
- Extension to video (Liu Chen 06)
25Proposed Method Semantic-Shift
- Appearance analyze across images
- Location analyze within image
- Appearance and location estimations are coupled
26- Initialize P(zd,w) with PLSA
- Identify foreground topic
- Estimate location and scale
- Semantic-Shift
27Semantic-Shift
PLSA
PLSA
Semantic Shift
Semantic Shift
LocationSemanticsare shifting
28x
d
z
w
x
w
z
D
29Datasets
- UIUC car dataset
- Training 550 cropped car images 382 non-car
images - Testing 170 car images 118 non-car images
- Caltech face background dataset
- 450 frontal face images of 27 or so unique people
- 550 images of assorted scenes
- Half for training, half for testing
30Categorization Performance on Face Dataset