Title: Solving Quadratics by Completing the Square
1Solving QuadraticsbyCompleting the
SquareQuadratic Formula
By Jeffrey Bivin Lake Zurich High
School jeff.bivin_at_lz95.org
Last Updated October 24, 2007
2X2 6x 9
x
1
1
1
1
1
1
x
x 3
Now, complete the square
1
9
1
1
x 3
Jeff Bivin -- LZHS
3X2 4x 4
x
1
1
1
1
x
x 2
Now, complete the square
1
4
1
x 2
Jeff Bivin -- LZHS
4X2 5x 25/4
x
1
1
1
1
1
.5
x
x 5/2
Now, complete the square
1
25/4
1
.5
x 5/2
Jeff Bivin -- LZHS
5X2 - 6x 9
x
1
1
1
1
1
1
1
1
1
x - 3
x
1
9
1
1
turn 1 square over
x - 3
turn 1 square over
turn 2 squares over
turn 2 squares over
turn 3 squares over
Jeff Bivin -- LZHS
6Solve by Completing the Square
(x2 10x ) -8
(x2 10x (5)2) -8 25
(5)2 25
(x 5)2 17
Jeff Bivin -- LZHS
7Solve by Completing the Square
3
x2 8x 4 0
(x2 8x ) -4
(x2 8x (4)2) -4 16
(4)2 16
(x 4)2 12
Jeff Bivin -- LZHS
8Solve by Completing the Square
2
Jeff Bivin -- LZHS
9Solve by Completing the Square
2
Jeff Bivin -- LZHS
10Solve by Completing the Square
-5
Jeff Bivin -- LZHS
11Solve by Completing the Square
5
Jeff Bivin -- LZHS
12Solve by Completing the Square
5
Jeff Bivin -- LZHS
13Convert to vertex form
y - 8 (x2 10x )
(5)2 25
y - 8 25 (x2 10x (5)2)
y 17 (x2 10x (5)2)
y 17 (x 5)2 - 17
x 5 0
Axis of symmetry x -5
Vertex (-5, -17)
Jeff Bivin -- LZHS
14Convert to vertex form
y - 46 5(x2 - 6x )
5(-3)2 45
y - 46 45 5(x2 - 6x (-3)2)
y - 1 5(x2 - 6x (-3)2)
y - 1 5(x - 3)2 1
x - 3 0
Axis of symmetry x 3
Vertex (3, 1)
Jeff Bivin -- LZHS
15(No Transcript)
16Solve by Completing the Square
a
The Quadratic Formula
Jeff Bivin -- LZHS
17Solve using the Quadratic Formula
a 3
b 7
c -4
Jeff Bivin -- LZHS
18Solve using the Quadratic Formula
a 6
b 9
c 2
Jeff Bivin -- LZHS
19Solve using the Quadratic Formula
a 5
b -8
c 1
Jeff Bivin -- LZHS
20Solve using the Quadratic Formula
a 6
b -17
c -14
Jeff Bivin -- LZHS
21Solve using the Quadratic Formula
a 1
b 6
c 9
Jeff Bivin -- LZHS
22Solve using the Quadratic Formula
a 3
b 7
c 5
Two Imaginary Solutions
Jeff Bivin -- LZHS
23Why do some quadratic equations have 2 real
solutionssome have 1 real solution and some
have two imaginary solutions?
24Now Consider
Discriminant
89
0
-11
If discriminant gt 0, then 2 real solutions
If discriminant 0, then 1 real solution
If discriminant lt 0, then 2 imaginary solutions
Jeff Bivin -- LZHS
25That's All Folks
Jeff Bivin -- LZHS