Solving Quadratics by Completing the Square - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Solving Quadratics by Completing the Square

Description:

Solve by Completing the Square. x2 10x 8 = 0 (x2 10x ) = -8 (x2 10x (5)2) = -8 25 ... Solve by Completing the Square. 3x2 24x 12 = 0 (x2 8x ) ... – PowerPoint PPT presentation

Number of Views:1396
Avg rating:3.0/5.0
Slides: 26
Provided by: lz95
Category:

less

Transcript and Presenter's Notes

Title: Solving Quadratics by Completing the Square


1
Solving QuadraticsbyCompleting the
SquareQuadratic Formula
By Jeffrey Bivin Lake Zurich High
School jeff.bivin_at_lz95.org
Last Updated October 24, 2007
2
X2 6x 9
x
1
1
1
1
1
1
x
x 3
Now, complete the square
1
9
1
1
x 3
Jeff Bivin -- LZHS
3
X2 4x 4
x
1
1
1
1
x
x 2
Now, complete the square
1
4
1
x 2
Jeff Bivin -- LZHS
4
X2 5x 25/4
x
1
1
1
1
1
.5
x
x 5/2
Now, complete the square
1
25/4
1
.5
x 5/2
Jeff Bivin -- LZHS
5
X2 - 6x 9
x
1
1
1
1
1
1
1
1
1
x - 3
x
1
9
1
1
turn 1 square over
x - 3
turn 1 square over
turn 2 squares over
turn 2 squares over
turn 3 squares over
Jeff Bivin -- LZHS
6
Solve by Completing the Square
  • x2 10x 8 0

(x2 10x ) -8
(x2 10x (5)2) -8 25
(5)2 25
(x 5)2 17
Jeff Bivin -- LZHS
7
Solve by Completing the Square
  • 3x2 24x 12 0

3
x2 8x 4 0
(x2 8x ) -4
(x2 8x (4)2) -4 16
(4)2 16
(x 4)2 12
Jeff Bivin -- LZHS
8
Solve by Completing the Square
  • 2x2 5x - 12 0

2
Jeff Bivin -- LZHS
9
Solve by Completing the Square
  • 2x2 - 12x - 11 0

2
Jeff Bivin -- LZHS
10
Solve by Completing the Square
  • -5x2 12x 19 0

-5
Jeff Bivin -- LZHS
11
Solve by Completing the Square
  • 5x2 - 30x 45 0

5
Jeff Bivin -- LZHS
12
Solve by Completing the Square
  • 5x2 - 30x 75 0

5
Jeff Bivin -- LZHS
13
Convert to vertex form
  • y x2 10x 8

y - 8 (x2 10x )
(5)2 25
y - 8 25 (x2 10x (5)2)
y 17 (x2 10x (5)2)
y 17 (x 5)2 - 17
x 5 0
Axis of symmetry x -5
Vertex (-5, -17)
Jeff Bivin -- LZHS
14
Convert to vertex form
  • y 5x2 - 30x 46

y - 46 5(x2 - 6x )
5(-3)2 45
y - 46 45 5(x2 - 6x (-3)2)
y - 1 5(x2 - 6x (-3)2)
y - 1 5(x - 3)2 1
x - 3 0
Axis of symmetry x 3
Vertex (3, 1)
Jeff Bivin -- LZHS
15
(No Transcript)
16
Solve by Completing the Square
  • ax2 bx c 0

a
The Quadratic Formula
Jeff Bivin -- LZHS
17
Solve using the Quadratic Formula
  • 3x2 7x - 4 0

a 3
b 7
c -4
Jeff Bivin -- LZHS
18
Solve using the Quadratic Formula
  • 6x2 9x 2 0

a 6
b 9
c 2
Jeff Bivin -- LZHS
19
Solve using the Quadratic Formula
  • 5x2 - 8x 1 0

a 5
b -8
c 1
Jeff Bivin -- LZHS
20
Solve using the Quadratic Formula
  • 6x2 - 17x - 14 0

a 6
b -17
c -14
Jeff Bivin -- LZHS
21
Solve using the Quadratic Formula
  • x2 6x 9 0

a 1
b 6
c 9
Jeff Bivin -- LZHS
22
Solve using the Quadratic Formula
  • 3x2 7x 5 0

a 3
b 7
c 5
Two Imaginary Solutions
Jeff Bivin -- LZHS
23
Why do some quadratic equations have 2 real
solutionssome have 1 real solution and some
have two imaginary solutions?
24
Now Consider
  • ax2 bx c 0

Discriminant
89
0
-11
If discriminant gt 0, then 2 real solutions
If discriminant 0, then 1 real solution
If discriminant lt 0, then 2 imaginary solutions
Jeff Bivin -- LZHS
25
That's All Folks
Jeff Bivin -- LZHS
Write a Comment
User Comments (0)
About PowerShow.com