Title: Predictive Controller Tuning
1Predictive Controller Tuning Steady State
Target Selection A Covariance Assignment
Approach
- Donald J Chmielewski
- Illinois Institute of Technology
- Annual Meeting of the AIChE
- November 2000, Los Angeles, CA
2Previous Work
- Tuning of Predictive Controllers
- - Cutler (1983)
- - Shridhar Cooper (1998)
- - Loeblein Perkins (1999)
- Steady State Target Selection
- - Muske Rawlings (1994)
- - de Hennin et. al. (1994)
- - Rao Rawlings (1999)
- - Loeblein Perkins (1999)
3Output Envelope Prediction
-------------------
z
-------------------
w
---------------------
-------------------
t
t
Process
Outputs
Disturbance Inputs
Measurements
Sensor Noise
Controller
State Estimator
--------------------
u
---------------------
---------------------
v
--------------------
t
t
4Example Pre-Heated Reactor
O2 out
- Manipulated Variables
- Reactant Feed Rate (F)
- Fuel Feed Rate (Ff)
- Vent Position (V)
CO out
Vent Position
Furnace
To , F
TR
TF
CSTR
Fuel Feed
- Control Variables
- Reactor Temperature (TR)
- Furnace Temperature (TF)
- Furnace Oxygen (O2)
- Furnace CO (CO)
- Disturbance Input
- Feed Temperature (To)
5Infinite Horizon Predictive Control
8
S
- Min xT(k)Qx(k) uT(k)Ru(k)
- s.t. x(k1) A x(k) B u(k)
- xi (k) lt xi
- ui (k) lt ui
k 0
_
_
T
T
Unconstrained Solution
P (A-BL) P(A-BL) L RL Q L (B PB R) B
PA
T
T
-1
6Open Loop Response
7Closed Loop Response
8Closed Loop Response
9 Covariance Analysis
- Closed Loop Process
- x(k1) (A BL)x(k)
Gw(k)
- Covariance of the State
- Sx (A-BL) Sx (A-
BL)
T
T
G SwG
- Covariance of the Control Input
T
Su L Sx L
T
10Steady State Covariance of Scalar Signals
- State Variables
- lim E ( xi (k) )2 ei Sx ei
- Input Variables
- lim E ( ui (k) )2 ei Su ei ei LSx Lei
- where e i is the ith Row of the Identity
Matrix
T
8
k
T
T
T
8
k
11Covariance Bounded Design
There Exists L s.t. ei ?x eiT lt xi2 and eiL
?x LTeiT lt ui2 If and Only If There Exits X gt
0 and Y s.t.
eiXeiT lt xi2
X-AXATBYAT BY AYTB-G ?wGT BTYT X
ui2 eiY YTeiT X
gt 0 and
gt 0
-1
One such L is given by YX
12Selection of Covariance Bounds
xi
Xi
max
ui
Ui
s u
--------------------------------------------------
--------------------------------------------------
-
--------------------------------------------------
-------
s x
min
ui
xi
max
xi
min
- xi min( xi - xi ), ( xi - xi
) - ui min( ui - ui ), ( ui - ui
)
max
min
SS
SS
max
min
SS
SS
13Selection of Covariance Bounds
xi
Xi
max
ui
s u / 2
Ui
--------------------------------------------------
--------------------------------------------------
-
--------------------------------------------------
-------
s x
2
min
ui
xi
max
xi
min
- xi min( xi - xi ), ( xi - xi
) - ui min( ui - ui ), ( ui - ui
)
max
min
SS
SS
max
min
SS
SS
14Covariance Bounded Tuning
- Covariance Bounded Synthesis
- Given Sw , Dxi s Dui s
L - Tuning of Predictive Controller
- Given Sw , Dxi s Dui s
Q R
15Covariance Bounded LQR Design
- There Exists Q gt 0 R gt 0 s.t.
- ei Sx ei lt xi i 1n
- ei LSx Lei lt ui i 1m
- where Sx (A-BL) Sx (A- BL) G Sw G
- P (A-BL) P(A-BL) L
RL Q - L (B PB R) B PA
-
2
T
T
T
2
T
T
T
T
- 1
T
T
If . . .
16 There Exists X gt 0 Y gt 0 s.t. ei
A X (A ) ei lt xi i 1 .. n
ui eiYB BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB A
ABYB
BYB A
X
- 1
-1
T
T
2
T
2
gt
0
i 1 .. m
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
17- Give a pair (X, Y) that satisfy the previous
Linear Matrix Inequalities (LMIs). - Then,
- Q (X - BYB ) - A X A
- R Y
-
- will yield the Covariance Bounded LQR
- 1
- 1
T
T
-1
18Minimum Covariance Design
ei A Y (A ) ei lt sxi
sxi lt Dxi2 sui
eiYB sui lt Dui2 BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB
A ABYB
BYB A
X
min S
cxi sxi cui sui
sxi sui
- 1
-1
T
T
T
gt
0
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
19Closed Loop Response ( Minimized Temperature
Covariance )
20Closed Loop Response ( Minimized Reactant Feed
Covariance )
21Steady State Target Selection
- Minimum Covariance Design suggests that
- Profit a ( xi ui )
- Real Time Optimization Employs
- Profit a ( xi ui )
2
2
22Covariance Based Target Selection
ei A Y (A ) ei lt sxi
sxi lt Dxi2 sui
eiYB sui lt Dui2 BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB
A ABYB
BYB A
X
min S
1/2
1/2
cxi (sxi ) cui ( sui )
sxi sui
- 1
-1
T
T
T
gt
0
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
23Acknowledgments
- Michael J.K. Peng
- Armor College of Engineering, IIT
- Department of Chemical Environmental
Engineering, IIT
24Covariance Bounded LQR Design
- There Exists Q gt 0 R gt 0 s.t.
- ei Sx ei lt xi i 1n
- ei LSx Lei lt ui i 1m
- where Sx (A-BL) Sx (A- BL) G Sw G
- P (A-BL) P(A-BL) L
RL Q - L (B PB R) B PA
-
2
T
T
T
2
T
T
T
T
- 1
T
T
If and Only If. . .
25 There Exists X gt 0 , Y gt 0 and Z s.t.
ei Xei xi i 1 ..
n ui ei Z Z ei
X X - GSwG
AX -BZ (AX-BZ) X
X (AX - BZ)
Z AX - BZ X
0 Z 0
Y
T
2
gt
2
gt
0
i 1 .. m
T
T
T
gt
0
T
T
gt
0
T
26- Give a triple (X,Y, Z) that satisfy the previous
Linear Matrix Inequalities (LMIs). - Then,
- Q X (AX-BZ) X (AX-BZ) - X ZYZX
- R Y
-
- will yield the Covariance Bounded LQR
- 1
- 1
T
T
-1
-1
-1