Predictive Controller Tuning - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Predictive Controller Tuning

Description:

Predictive Controller Tuning – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 27
Provided by: Gue141
Category:

less

Transcript and Presenter's Notes

Title: Predictive Controller Tuning


1
Predictive Controller Tuning Steady State
Target Selection A Covariance Assignment
Approach
  • Donald J Chmielewski
  • Illinois Institute of Technology
  • Annual Meeting of the AIChE
  • November 2000, Los Angeles, CA

2
Previous Work
  • Tuning of Predictive Controllers
  • - Cutler (1983)
  • - Shridhar Cooper (1998)
  • - Loeblein Perkins (1999)
  • Steady State Target Selection
  • - Muske Rawlings (1994)
  • - de Hennin et. al. (1994)
  • - Rao Rawlings (1999)
  • - Loeblein Perkins (1999)

3
Output Envelope Prediction
-------------------
z
-------------------
w
---------------------
-------------------
t
t
Process
Outputs
Disturbance Inputs
Measurements
Sensor Noise
Controller
State Estimator
--------------------

u
---------------------
---------------------
v
--------------------
t
t
4
Example Pre-Heated Reactor
O2 out
  • Manipulated Variables
  • Reactant Feed Rate (F)
  • Fuel Feed Rate (Ff)
  • Vent Position (V)

CO out
Vent Position
Furnace
To , F
TR
TF
CSTR

Fuel Feed
  • Control Variables
  • Reactor Temperature (TR)
  • Furnace Temperature (TF)
  • Furnace Oxygen (O2)
  • Furnace CO (CO)
  • Disturbance Input
  • Feed Temperature (To)

5
Infinite Horizon Predictive Control
8
S
  • Min xT(k)Qx(k) uT(k)Ru(k)
  • s.t. x(k1) A x(k) B u(k)
  • xi (k) lt xi
  • ui (k) lt ui

k 0
_
_
T
T
Unconstrained Solution
P (A-BL) P(A-BL) L RL Q L (B PB R) B
PA
T
T
-1
6
Open Loop Response
7
Closed Loop Response
8
Closed Loop Response
9
Covariance Analysis
  • Closed Loop Process
  • x(k1) (A BL)x(k)
    Gw(k)
  • Covariance of the State
  • Sx (A-BL) Sx (A-
    BL)

T
T
G SwG
  • Covariance of the Control Input

T
Su L Sx L
T
10
Steady State Covariance of Scalar Signals
  • State Variables
  • lim E ( xi (k) )2 ei Sx ei
  • Input Variables
  • lim E ( ui (k) )2 ei Su ei ei LSx Lei
  • where e i is the ith Row of the Identity
    Matrix

T
8
k
T
T
T
8
k
11
Covariance Bounded Design
There Exists L s.t. ei ?x eiT lt xi2 and eiL
?x LTeiT lt ui2 If and Only If There Exits X gt
0 and Y s.t.
eiXeiT lt xi2
X-AXATBYAT BY AYTB-G ?wGT BTYT X
ui2 eiY YTeiT X
gt 0 and
gt 0
-1
One such L is given by YX
12
Selection of Covariance Bounds
xi
Xi
max
ui
Ui
s u
--------------------------------------------------
--------------------------------------------------
-
--------------------------------------------------
-------
s x
min
ui
xi
max
xi
min
  • xi min( xi - xi ), ( xi - xi
    )
  • ui min( ui - ui ), ( ui - ui
    )

max
min
SS
SS
max
min
SS
SS
13
Selection of Covariance Bounds
xi
Xi
max
ui
s u / 2
Ui
--------------------------------------------------
--------------------------------------------------
-
--------------------------------------------------
-------
s x
2
min
ui
xi
max
xi
min
  • xi min( xi - xi ), ( xi - xi
    )
  • ui min( ui - ui ), ( ui - ui
    )

max
min
SS
SS
max
min
SS
SS
14
Covariance Bounded Tuning
  • Covariance Bounded Synthesis
  • Given Sw , Dxi s Dui s
    L
  • Tuning of Predictive Controller
  • Given Sw , Dxi s Dui s
    Q R

15
Covariance Bounded LQR Design
  • There Exists Q gt 0 R gt 0 s.t.
  • ei Sx ei lt xi i 1n
  • ei LSx Lei lt ui i 1m
  • where Sx (A-BL) Sx (A- BL) G Sw G
  • P (A-BL) P(A-BL) L
    RL Q
  • L (B PB R) B PA

2
T
T
T
2
T
T
T
T
- 1
T
T
If . . .
16
There Exists X gt 0 Y gt 0 s.t. ei
A X (A ) ei lt xi i 1 .. n
ui eiYB BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB A
ABYB
BYB A
X
- 1
-1
T
T
2
T
2
gt
0
i 1 .. m
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
17
  • Give a pair (X, Y) that satisfy the previous
    Linear Matrix Inequalities (LMIs).
  • Then,
  • Q (X - BYB ) - A X A
  • R Y
  • will yield the Covariance Bounded LQR

- 1
- 1
T
T
-1
18
Minimum Covariance Design
ei A Y (A ) ei lt sxi
sxi lt Dxi2 sui
eiYB sui lt Dui2 BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB
A ABYB
BYB A
X
min S
cxi sxi cui sui
sxi sui
- 1
-1
T
T
T
gt
0
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
19
Closed Loop Response ( Minimized Temperature
Covariance )
20
Closed Loop Response ( Minimized Reactant Feed
Covariance )
21
Steady State Target Selection
  • Minimum Covariance Design suggests that
  • Profit a ( xi ui )
  • Real Time Optimization Employs
  • Profit a ( xi ui )

2
2
22
Covariance Based Target Selection
ei A Y (A ) ei lt sxi
sxi lt Dxi2 sui
eiYB sui lt Dui2 BYei
X X - BYB gt 0 X - AXA
ABYBA gt 0 X - AXA - AGSwG A 2ABYB
A ABYB
BYB A
X
min S
1/2
1/2
cxi (sxi ) cui ( sui )
sxi sui
- 1
-1
T
T
T
gt
0
T
T
T
T
T
T
T
T
T
T
T
gt
0
T
T
23
Acknowledgments
  • Michael J.K. Peng
  • Armor College of Engineering, IIT
  • Department of Chemical Environmental
    Engineering, IIT

24
Covariance Bounded LQR Design
  • There Exists Q gt 0 R gt 0 s.t.
  • ei Sx ei lt xi i 1n
  • ei LSx Lei lt ui i 1m
  • where Sx (A-BL) Sx (A- BL) G Sw G
  • P (A-BL) P(A-BL) L
    RL Q
  • L (B PB R) B PA

2
T
T
T
2
T
T
T
T
- 1
T
T
If and Only If. . .
25
There Exists X gt 0 , Y gt 0 and Z s.t.
ei Xei xi i 1 ..
n ui ei Z Z ei
X X - GSwG
AX -BZ (AX-BZ) X
X (AX - BZ)
Z AX - BZ X
0 Z 0
Y
T
2
gt
2
gt
0
i 1 .. m
T
T
T
gt
0
T
T
gt
0
T
26
  • Give a triple (X,Y, Z) that satisfy the previous
    Linear Matrix Inequalities (LMIs).
  • Then,
  • Q X (AX-BZ) X (AX-BZ) - X ZYZX
  • R Y
  • will yield the Covariance Bounded LQR

- 1
- 1
T
T
-1
-1
-1
Write a Comment
User Comments (0)
About PowerShow.com