TM 631 Optimization Fall 2006 Dr. Frank Joseph Matejcik - PowerPoint PPT Presentation

About This Presentation
Title:

TM 631 Optimization Fall 2006 Dr. Frank Joseph Matejcik

Description:

Weak duality property, if x is a feasible solution for primal and y is feasible ... Duality Theorem. 1. If one problem has feasible solutions and a ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 77
Provided by: skel5
Category:

less

Transcript and Presenter's Notes

Title: TM 631 Optimization Fall 2006 Dr. Frank Joseph Matejcik


1
TM 631 Optimization Fall 2006Dr. Frank Joseph
Matejcik
4th Session Ch. 4 Duality Theory 9/25/06
2
Activities
  • Review assignments and resources
  • Assignment
  • weird way of numbering problems 6.3-1, 6.3-5,
    and 6.8-3(abce)
  • Chapter 6 H L (Limited discussion)

3
Tentative Schedule
Chapters Assigned 8/28/2006 1,
2 ________ 9/04/2006 Holiday 9/11/2006 3
3.1-8,3.2-4,3.6-3 9/18/2006 4 4.3-6, 4.4-6,
4.7-6 9/25/2006 6 6.3-1, 6.3-5, and
6.8-3(abce) 10/02/2006 Exam 1 10/09/2006 Holiday 1
0/16/2006 8 10/23/2006 8 cont. 10/30/2006 21 11/06
/2006 Exam 2
Chapters Assigned 11/13/2006 9
11/20/2006 9 cont. 11/27/2006 11 12/04/2006 11
or 13 12/11/2005 Final
4
Web Resources
  • Class Web site on the HPCnet system
  • http//sdmines.sdsmt.edu/sdsmt/directory/courses/2
    006fa/tm631021
  • Streaming video http//its.sdsmt.edu/Distance/
  • The same class session that is on the DVD is on
    the stream in lower quality. http//www.flashget.c
    om/ will allow you to capture the stream more
    readily and review the lecture, anywhere you can
    get your computer to run.
  • Answers not posted, yet.

5
6.1Alt Model K-Corp
  • Max Z 3X1 5X2
  • s.t.
  • X1 lt 8
  • X2 lt 6
  • 3X1 4X2 lt 36
  • X1 gt 0
  • X2 gt 0
  • where Z profit (in 1,000,000s)

6
6.1Alt Primal / Dual
  • Max Z 3X1 5X2 Min Yo 8Y1 6Y2 36Y3
  • s.t. s.t.
  • X1 lt 8 Y1 3Y3 gt 3
  • X2 lt 6 Y2 4Y3 gt 5
  • 3X1 4X2 lt 36 Y1, Y2 gt 0
  • X1 , X2 gt 0

7
6.1Alt Primal / Dual (General Case)
Primal Dual
8
6.1Alt Primal / Dual (Relationship)
Like Table 6.2
9
6.1Alt Primal / Dual (Relationship)
The only feasible solutions to primal are those
that satisfy optimality conditions for primal
10
6.1Alt Primal / Dual (Relationship)
Primal works feasible to optimal Dual works
optimal to feasible
11
6.1Alt Primal / Dual (Relationship)
Primal works feasible to optimal Dual works
optimal to feasible
12
6.1Alt Primal / Dual Relationships
  • Weak duality property, if x is a feasible
    solution for primal and y is feasible solution
    for dual,
  • cx lt yb
  • Strong duality property, if x is optimal for
    primal and y is optimal for dual,
  • cx yb

13
6.1 Primal / Dual Relationships
  • Complementary Solutions, each iteration of
    simplex identifies a CPF solution x for primal
    and a complementary solution y for dual
  • cx yb
  • if x is not optimal for primal, then y is not
    feasible for dual

14
6.1Alt Primal / Dual Relationships
  • Complementary Slackness Property
  • xj basic in primal ysi nonbasic in dual
  • xj nonbasic in primal ysi basic in dual
  • xsj basic in primal yi nonbasic in dual
  • xsj basic in primal yi nonbasic in dual

15
6.1Alt Primal / Dual Relationships
  • Duality Theorem
  • 1. If one problem has feasible solutions and a
  • bounded objective function, then so does the
    other problem.
  • 2. If one problem has feasible solutions and an
  • unbounded objective function, the other has no
    feasible solutions.
  • 3. If one problem has no feasible solutions, the
  • other has either no feasible solutions or an
    unbounded objective function.

16
6.3 Complementary Slackness
  • Max Z 3X1 5X2 Min Yo 8Y1 6Y2 36Y3
  • s.t. s.t.
  • X1 lt 8 Y1 3Y3 gt 3
  • X2 lt 6 Y2 4Y3 gt 5
  • 3X1 4X2 lt 36

17
6.3 Complementary Slackness
Iteration 0
  • x1 0 ys1 -3 Z yo 0
  • x2 0 ys2 -5
  • xs1 8 y1 0
  • xs2 6 y2 0
  • xs3 36 y3 0

18
6.3 Complementary Slackness
  • Min Yo 8Y1 6Y2 36Y3 ys1 -3
  • s.t. ys2 -5
  • Y1 3Y3 gt 3 y1 0
  • Y2 4Y3 gt 5 y2 0
  • y3 0
  • Yo 8(0) 6(0) 36(0) 0
  • 0 3(0) gt 3
  • 0 4(0) gt 5

19
6.3 Complementary Slackness
Iteration 1
  • x1 0 ys1 -3 Z yo 30
  • x2 6 ys2 0
  • xs1 8 y1 0
  • xs2 0 y2 5
  • xs3 12 y3 0

20
6.3 Complementary Slackness
  • Min Yo 8Y1 6Y2 36Y3 ys1 -3
  • s.t. ys2 0
  • Y1 3Y3 gt 3 y1 0
  • Y2 4Y3 gt 5 y2 5
  • y3 0
  • Yo 8(0) 6(5) 36(0) 30
  • 0 3(0) gt 3
  • 5 4(0) gt 5

21
6.3 Complementary Slackness
  • Min Yo 8Y1 6Y2 36Y3 ys1 -3
  • s.t. ys2 -5
  • Y1 3Y3 gt 3 y1 0
  • Y2 4Y3 gt 5 y2 0
  • y3 0
  • Yo 8(0) 6(0) 36(0) 0
  • 0 3(0) gt 3
  • 0 4(0) gt 5

Infeasible
22
6.3 Complementary Slackness
Iteration 2
  • x1 4 ys1 0 Z yo 42
  • x2 6 ys2 0
  • xs1 4 y1 0
  • xs2 0 y2 1
  • xs3 0 y3 1

23
6.3 Complementary Slackness
  • Min Yo 8Y1 6Y2 36Y3 ys1 0
  • s.t. ys2 0
  • Y1 3Y3 gt 3 y1 0
  • Y2 4Y3 gt 5 y2 1
  • y3 1
  • Yo 8(0) 6(1) 36(1) 42
  • 0 3(1) gt 3
  • 5 4(1) gt 5

24
6.3 Complementary Slackness
  • Min Yo 8Y1 6Y2 36Y3 ys1 0
  • s.t. ys2 0
  • Y1 3Y3 gt 3 y1 0
  • Y2 4Y3 gt 5 y2 1
  • y3 1
  • Yo 8(0) 6(1) 36(1) 42
  • 0 3(1) gt 3
  • 5 4(1) gt 5

Feasible
25
6.6 Sensitivity Analysis

y 0 1 1
26
6.6 Sensitivity Analysis

y 0 1 1
Suppose we consider changing the right hand side
of constraint 3 3X1 4X2 lt 36 48
27
6.6 Sensitivity Analysis
  • b Sb ?


-
8
4
3
6
1
3
48
0
/
(
)
/
(
)



0
1
6
0
6
(
)
-

0
4
3
6
1
3
48
8
/
(
)
/
(
)
28
6.6 Sensitivity Analysis
  • New Solution
  • Xs1 0
  • X2 6
  • X3 8

29
6.7 Sensitivity Analysis
Consider range on b3. 24 lt b3 lt 48 optimal
basis at intersection constraints 2 3
30
6.7 Changes in cj Parameters
Z 3X1 5X2 Now, suppose c2 goes to ?.
(4,6)
31
6.7 Changes in cj Parameters
Z 3X1 5X2 If, 4 lt c2 lt ?, Optimal
remains at (4,6) with Z 42
32
6.7 Reflection on Sensitivity
  • Recall, the graphical changes on the right hand
    side.

33
6.7 Shadow Prices
Consider range on b1. 4 lt b1 lt ? optimal
basis at intersection constraints 2 3
34
6.7 Shadow Prices
Consider range on b2.
35
6.7 Shadow Prices
Consider range on b2. 3 lt b2 lt 9 optimal
basis at intersection constraints 2 3
X2 lt 6
(8,3)
36
6.7 Shadow Prices
Consider range on b3. 24 lt b3 lt 48 optimal
basis at intersection constraints 2 3
37
6.7 Sensitivity Summary
  • Max Z 3X1 5X2
  • s.t.
  • X1 lt 8 4 lt b1 lt ? y10
  • X2 lt 6 3 lt b2 lt 9 y21
  • 3X1 4X2 lt 36 24 lt b3 lt 48 y31
  • X1, X2 gt 0

38
6.7 Using Duality
  • Recall,
  • b Sb ?
  • For, K-Corp

39
6.7 Using Duality for Sensitivity
  • b

40
6.7 Using Duality for Sensitivity
  • For basis to remain in solution,
  • b
    gt 0

41
6.7 Using Duality for Sensitivity
  • Range on
  • b
    gt 0

42
6.7 Using Duality for Sensitivity
  • Range on
  • b
    gt 0

43
6.7 Using Duality for Sensitivity
  • Range on
  • b
  • 4 gt 0
  • gt -4

44
6.7 Using Duality for Sensitivity
  • Range on
  • b
  • 4 gt 0
  • gt -4 b1 gt 4

45
6.7 Using Duality for Sensitivity
  • Range on
  • b
    gt 0

46
6.7 Using Duality for Sensitivity
  • Range on
  • b

47
6.7 Using Duality for Sensitivity
  • Range on
  • b

48
6.7 Using Duality for Sensitivity
  • Range on
  • b

49
6.7 Using Duality for Sensitivity
  • Range on
  • b
    gt 0

50
6.7 Using Duality for Sensitivity
  • Range on
  • b

51
6.7 Using Duality for Sensitivity
  • Range on
  • b

52
6.7 Using Duality for Sensitivity
Summary b
53
6.7 Sensitivity Summary
  • Max Z 3X1 5X2
  • s.t.
  • X1 lt 8 4 lt b1 lt ? y10
  • X2 lt 6 3 lt b2 lt 9 y21
  • 3X1 4X2 lt 36 24 lt b3 lt 48 y31
  • X1, X2 gt 0

54
6.7 Changes to Objective Function
  • Recall from graphical technique, changes to the
    objective function

55
6.7 Changes in cj Parameters
Z 3X1 5X2 42
(4,6)
56
6.7 Changes in cj Parameters
Z 3X1 5X2 Suppose c1 drops to 0.
(4,6)
57
6.7 Changes in cj Parameters
Z 3X1 5X2 Now, suppose c1 goes to 3 3/4.
(4,6)
58
6.7 Changes in cj Parameters
Z 3X1 5X2 If, 0 lt c1 lt 33/4, Optimal
remains at (4,6) with Z 42
59
6.7 Changes in cj Parameters
Z 3X1 5X2 Suppose c2 drops to 4.
(4,6)
60
6.7 Chages in cj Parameters
Z 3X1 5X2 Now, suppose c2 goes to ?.
(4,6)
61
6.7 Changes in cj Parameters
Z 3X1 5X2 If, 4 lt c2 lt ?, Optimal
remains at (4,6) with Z 42
62
6.7 Changes in cj Parameters
0 lt c1 lt 3 3/4 4 lt c2 lt ?
63
6.7 Changes to Objective Function

y 0 1 1
64
6.7 Changes to Objective Function

y 0 1 1
65
6.7 Changes to Objective Function
66
6.7 Changes to Objective Function
67
6.7 Changes to Objective Function
68
6.7 Changes to Objective Function
69
6.7 Changes to Objective Function
70
6.7 Changes to Objective Function
71
6.7 Changes to Objective Function
72
6.7 Changes to Objective Function
73
6.7 Changes to Objective Function

³
D
74
6.7 Changes to Objective Function

³
D
75
6.7 Changes to Objective Function

³
D
76
6.7 Sensitivity Summary
0 lt c1 lt 3 3/4, 4 lt c2 lt ?
  • Max Z 3X1 5X2
  • s.t.
  • X1 lt 8 4 lt b1 lt 12 y10
  • X2 lt 6 4 lt b2 lt 9 y21
  • 3X1 4X2lt 36 24 lt b3 lt 48 y31
  • X1, X2 gt 0

77
6.7 Changes to Objective Function

y 0 1 1
78
6.8 Sensitivity Analysis on a Spreadsheet
  • Main Methods
  • Make individual changes and resolve it.
  • Generate a table of changes. The books method
    involves a specialty add-in called Solver Table.
  • Get the sensitivity report. Chapter 4 describes
    the method of getting it.
  • IOR Tutor also has
  • Graphical Method and Sensitivity Analysis.
Write a Comment
User Comments (0)
About PowerShow.com