Title: TM 631 Optimization Fall 2006 Dr. Frank Joseph Matejcik
1TM 631 Optimization Fall 2006Dr. Frank Joseph
Matejcik
4th Session Ch. 4 Duality Theory 9/25/06
2Activities
- Review assignments and resources
- Assignment
- weird way of numbering problems 6.3-1, 6.3-5,
and 6.8-3(abce) - Chapter 6 H L (Limited discussion)
3Tentative Schedule
Chapters Assigned 8/28/2006 1,
2 ________ 9/04/2006 Holiday 9/11/2006 3
3.1-8,3.2-4,3.6-3 9/18/2006 4 4.3-6, 4.4-6,
4.7-6 9/25/2006 6 6.3-1, 6.3-5, and
6.8-3(abce) 10/02/2006 Exam 1 10/09/2006 Holiday 1
0/16/2006 8 10/23/2006 8 cont. 10/30/2006 21 11/06
/2006 Exam 2
Chapters Assigned 11/13/2006 9
11/20/2006 9 cont. 11/27/2006 11 12/04/2006 11
or 13 12/11/2005 Final
4Web Resources
- Class Web site on the HPCnet system
- http//sdmines.sdsmt.edu/sdsmt/directory/courses/2
006fa/tm631021 - Streaming video http//its.sdsmt.edu/Distance/
- The same class session that is on the DVD is on
the stream in lower quality. http//www.flashget.c
om/ will allow you to capture the stream more
readily and review the lecture, anywhere you can
get your computer to run. - Answers not posted, yet.
56.1Alt Model K-Corp
- Max Z 3X1 5X2
- s.t.
- X1 lt 8
- X2 lt 6
- 3X1 4X2 lt 36
- X1 gt 0
- X2 gt 0
- where Z profit (in 1,000,000s)
66.1Alt Primal / Dual
- Max Z 3X1 5X2 Min Yo 8Y1 6Y2 36Y3
- s.t. s.t.
- X1 lt 8 Y1 3Y3 gt 3
- X2 lt 6 Y2 4Y3 gt 5
- 3X1 4X2 lt 36 Y1, Y2 gt 0
- X1 , X2 gt 0
76.1Alt Primal / Dual (General Case)
Primal Dual
86.1Alt Primal / Dual (Relationship)
Like Table 6.2
96.1Alt Primal / Dual (Relationship)
The only feasible solutions to primal are those
that satisfy optimality conditions for primal
106.1Alt Primal / Dual (Relationship)
Primal works feasible to optimal Dual works
optimal to feasible
116.1Alt Primal / Dual (Relationship)
Primal works feasible to optimal Dual works
optimal to feasible
126.1Alt Primal / Dual Relationships
- Weak duality property, if x is a feasible
solution for primal and y is feasible solution
for dual, - cx lt yb
- Strong duality property, if x is optimal for
primal and y is optimal for dual, - cx yb
136.1 Primal / Dual Relationships
- Complementary Solutions, each iteration of
simplex identifies a CPF solution x for primal
and a complementary solution y for dual - cx yb
- if x is not optimal for primal, then y is not
feasible for dual
146.1Alt Primal / Dual Relationships
- Complementary Slackness Property
-
- xj basic in primal ysi nonbasic in dual
- xj nonbasic in primal ysi basic in dual
- xsj basic in primal yi nonbasic in dual
- xsj basic in primal yi nonbasic in dual
-
156.1Alt Primal / Dual Relationships
- Duality Theorem
- 1. If one problem has feasible solutions and a
- bounded objective function, then so does the
other problem. - 2. If one problem has feasible solutions and an
- unbounded objective function, the other has no
feasible solutions. - 3. If one problem has no feasible solutions, the
- other has either no feasible solutions or an
unbounded objective function.
166.3 Complementary Slackness
- Max Z 3X1 5X2 Min Yo 8Y1 6Y2 36Y3
- s.t. s.t.
- X1 lt 8 Y1 3Y3 gt 3
- X2 lt 6 Y2 4Y3 gt 5
- 3X1 4X2 lt 36
176.3 Complementary Slackness
Iteration 0
- x1 0 ys1 -3 Z yo 0
- x2 0 ys2 -5
- xs1 8 y1 0
- xs2 6 y2 0
- xs3 36 y3 0
186.3 Complementary Slackness
- Min Yo 8Y1 6Y2 36Y3 ys1 -3
- s.t. ys2 -5
- Y1 3Y3 gt 3 y1 0
- Y2 4Y3 gt 5 y2 0
- y3 0
- Yo 8(0) 6(0) 36(0) 0
- 0 3(0) gt 3
- 0 4(0) gt 5
196.3 Complementary Slackness
Iteration 1
- x1 0 ys1 -3 Z yo 30
- x2 6 ys2 0
- xs1 8 y1 0
- xs2 0 y2 5
- xs3 12 y3 0
206.3 Complementary Slackness
- Min Yo 8Y1 6Y2 36Y3 ys1 -3
- s.t. ys2 0
- Y1 3Y3 gt 3 y1 0
- Y2 4Y3 gt 5 y2 5
- y3 0
- Yo 8(0) 6(5) 36(0) 30
- 0 3(0) gt 3
- 5 4(0) gt 5
216.3 Complementary Slackness
- Min Yo 8Y1 6Y2 36Y3 ys1 -3
- s.t. ys2 -5
- Y1 3Y3 gt 3 y1 0
- Y2 4Y3 gt 5 y2 0
- y3 0
- Yo 8(0) 6(0) 36(0) 0
- 0 3(0) gt 3
- 0 4(0) gt 5
Infeasible
226.3 Complementary Slackness
Iteration 2
- x1 4 ys1 0 Z yo 42
- x2 6 ys2 0
- xs1 4 y1 0
- xs2 0 y2 1
- xs3 0 y3 1
236.3 Complementary Slackness
- Min Yo 8Y1 6Y2 36Y3 ys1 0
- s.t. ys2 0
- Y1 3Y3 gt 3 y1 0
- Y2 4Y3 gt 5 y2 1
- y3 1
- Yo 8(0) 6(1) 36(1) 42
- 0 3(1) gt 3
- 5 4(1) gt 5
246.3 Complementary Slackness
- Min Yo 8Y1 6Y2 36Y3 ys1 0
- s.t. ys2 0
- Y1 3Y3 gt 3 y1 0
- Y2 4Y3 gt 5 y2 1
- y3 1
- Yo 8(0) 6(1) 36(1) 42
- 0 3(1) gt 3
- 5 4(1) gt 5
Feasible
256.6 Sensitivity Analysis
y 0 1 1
266.6 Sensitivity Analysis
y 0 1 1
Suppose we consider changing the right hand side
of constraint 3 3X1 4X2 lt 36 48
276.6 Sensitivity Analysis
-
8
4
3
6
1
3
48
0
/
(
)
/
(
)
0
1
6
0
6
(
)
-
0
4
3
6
1
3
48
8
/
(
)
/
(
)
286.6 Sensitivity Analysis
- New Solution
- Xs1 0
- X2 6
- X3 8
296.7 Sensitivity Analysis
Consider range on b3. 24 lt b3 lt 48 optimal
basis at intersection constraints 2 3
306.7 Changes in cj Parameters
Z 3X1 5X2 Now, suppose c2 goes to ?.
(4,6)
316.7 Changes in cj Parameters
Z 3X1 5X2 If, 4 lt c2 lt ?, Optimal
remains at (4,6) with Z 42
326.7 Reflection on Sensitivity
- Recall, the graphical changes on the right hand
side.
336.7 Shadow Prices
Consider range on b1. 4 lt b1 lt ? optimal
basis at intersection constraints 2 3
346.7 Shadow Prices
Consider range on b2.
356.7 Shadow Prices
Consider range on b2. 3 lt b2 lt 9 optimal
basis at intersection constraints 2 3
X2 lt 6
(8,3)
366.7 Shadow Prices
Consider range on b3. 24 lt b3 lt 48 optimal
basis at intersection constraints 2 3
376.7 Sensitivity Summary
- Max Z 3X1 5X2
- s.t.
- X1 lt 8 4 lt b1 lt ? y10
- X2 lt 6 3 lt b2 lt 9 y21
- 3X1 4X2 lt 36 24 lt b3 lt 48 y31
- X1, X2 gt 0
386.7 Using Duality
- Recall,
- b Sb ?
- For, K-Corp
-
396.7 Using Duality for Sensitivity
406.7 Using Duality for Sensitivity
- For basis to remain in solution,
- b
gt 0
416.7 Using Duality for Sensitivity
426.7 Using Duality for Sensitivity
436.7 Using Duality for Sensitivity
446.7 Using Duality for Sensitivity
- Range on
- b
- 4 gt 0
- gt -4 b1 gt 4
456.7 Using Duality for Sensitivity
466.7 Using Duality for Sensitivity
476.7 Using Duality for Sensitivity
486.7 Using Duality for Sensitivity
496.7 Using Duality for Sensitivity
506.7 Using Duality for Sensitivity
516.7 Using Duality for Sensitivity
526.7 Using Duality for Sensitivity
Summary b
536.7 Sensitivity Summary
- Max Z 3X1 5X2
- s.t.
- X1 lt 8 4 lt b1 lt ? y10
- X2 lt 6 3 lt b2 lt 9 y21
- 3X1 4X2 lt 36 24 lt b3 lt 48 y31
- X1, X2 gt 0
546.7 Changes to Objective Function
- Recall from graphical technique, changes to the
objective function
556.7 Changes in cj Parameters
Z 3X1 5X2 42
(4,6)
566.7 Changes in cj Parameters
Z 3X1 5X2 Suppose c1 drops to 0.
(4,6)
576.7 Changes in cj Parameters
Z 3X1 5X2 Now, suppose c1 goes to 3 3/4.
(4,6)
586.7 Changes in cj Parameters
Z 3X1 5X2 If, 0 lt c1 lt 33/4, Optimal
remains at (4,6) with Z 42
596.7 Changes in cj Parameters
Z 3X1 5X2 Suppose c2 drops to 4.
(4,6)
606.7 Chages in cj Parameters
Z 3X1 5X2 Now, suppose c2 goes to ?.
(4,6)
616.7 Changes in cj Parameters
Z 3X1 5X2 If, 4 lt c2 lt ?, Optimal
remains at (4,6) with Z 42
626.7 Changes in cj Parameters
0 lt c1 lt 3 3/4 4 lt c2 lt ?
636.7 Changes to Objective Function
y 0 1 1
646.7 Changes to Objective Function
y 0 1 1
656.7 Changes to Objective Function
666.7 Changes to Objective Function
676.7 Changes to Objective Function
686.7 Changes to Objective Function
696.7 Changes to Objective Function
706.7 Changes to Objective Function
716.7 Changes to Objective Function
726.7 Changes to Objective Function
736.7 Changes to Objective Function
³
D
746.7 Changes to Objective Function
³
D
756.7 Changes to Objective Function
³
D
766.7 Sensitivity Summary
0 lt c1 lt 3 3/4, 4 lt c2 lt ?
- Max Z 3X1 5X2
- s.t.
- X1 lt 8 4 lt b1 lt 12 y10
- X2 lt 6 4 lt b2 lt 9 y21
- 3X1 4X2lt 36 24 lt b3 lt 48 y31
- X1, X2 gt 0
776.7 Changes to Objective Function
y 0 1 1
786.8 Sensitivity Analysis on a Spreadsheet
- Main Methods
- Make individual changes and resolve it.
- Generate a table of changes. The books method
involves a specialty add-in called Solver Table. - Get the sensitivity report. Chapter 4 describes
the method of getting it. - IOR Tutor also has
- Graphical Method and Sensitivity Analysis.