Irregular Pyramids with Combinatorial Maps - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Irregular Pyramids with Combinatorial Maps

Description:

Irregular Pyramids with Combinatorial Maps. Luc Brun and ... Duality. Combinatorial Maps Advantages. Efficient implementation. Implicit encoding of the dual ... – PowerPoint PPT presentation

Number of Views:75
Avg rating:3.0/5.0
Slides: 25
Provided by: llucbrunan
Category:

less

Transcript and Presenter's Notes

Title: Irregular Pyramids with Combinatorial Maps


1
Irregular Pyramids with Combinatorial Maps
  • Luc Brun and Walter Kropatsch
  • L.E.R.I. - Reims University (France)
  • P.R.I.P. - Vienna University of Technology
    (Austria)

2
Contents
  • Problem and alternative solutions
  • Combinatorial maps
  • Irregular Pyramids
  • Construction of Irregular Pyramids

3
Embedding in the image plane
  • Encode topological relationships.

?
G(V,E) ?
4
Topological Structures
  • Alternative solutions
  • Store the coordinates of the objects
  • Local deformation of digital curves Rosenfeld97
  • Dual Graphs

5
Dual Graphs
6
Dual Graphs
G(V,E)
7
Dual Graphs
G ?
?
8
Dual Graphs
9
Dual Graphs
Boundary Graph
10
Combinatorial Maps
?)
?,
G (
D,
D Set of half edges (darts)
11
Combinatorial Maps Basic Properties
  • Dual graph
  • Bridge
  • Self-loop

12
Basic Operations
Removal
Contraction
13
Basic OperationsDuality
14
Combinatorial Maps Advantages
  • Efficient implementation
  • Implicit encoding of the dual
  • Explicit encoding of the orientation
  • Same Formalism for 3D and 4D combinatorial maps
    Lienhardt91.

15
Simplifications of the initial Embedding
Image
Combinatorial map
16
Simplifications of the initial Embedding
G0(D0,?0,?)
G1(D1,?1,?)
G2(D2,?2,?)
G3(D3,?3,?)
17
Irregular Pyramids
  • Stack of successively reduced graphs
  • A set of Contraction or removal operations
  • Applications
  • Connected component labelling
  • Segmentation
  • Line images
  • Matching

Construction
Gn(Dn,?n,?)
Dn-1,n
D2,3
G2(D2,?2,?)
D1,2
G1(D1,?1,?)
D0,1
G0(D0,?0,?)
18
Building one pyramid level
  • Do not remove bridges nor contract self-loops.

19
Decimation Parameter
  • a set of contracted darts
  • A contracted dart link a surviving vertex to a
    non surviving one.
  • One contracted edge is incident to each non
    surviving vertex.

20
Contracted MapG(D,?,?)/?(D)
  • ? remains unchanged on SD D- ?(D)
  • ? is modified

1
-1
4
-4
1
-1
4
-4
3
6
-2
-7
-3
5
3
2
-2
5
-5
-3
2
-5
-6
-7
6
7
6
7
21
Construction of the contracted map
G(D,?,?)
G(D,?,?)
  • For each surviving dart d, in parallel
  • do
  • iMin j?0,1,2 ?j(?(d)) survives
  • ?(d) ?(d)
  • ?(d) ?i(?(d))
  • done

22
Conclusion
  • Combinatorial Maps can build Irregular Pyramids
  • Each level is a planar graph
  • The base is the 4-neighbourhood graph of the
    pixel array
  • Contraction preserves Topological Structures.

23
Future Work
  • Extend the idea of Decimation Parameters
    (Contraction Kernels TR-57,TR-63)
  • Study some applications
  • Segmentation
  • Structural matching
  • Integration of moving objects

24
References
  • Rosenfeld97 Azriel Rosenfeld and Akira
    Nakamura. Local deformations of digital curves.
    Pattern Recognition Letters, 18613-620, 1997.
  • Lienhardt91 Pascal Lienhardt. Topological
    models for boundary representation a comparison
    with n-dimensional generalised maps.
    Computer-aided design, 23(1)59-82, 1991
  • Technical Reports
  • http//www.prip.tuwien.ac.at/
Write a Comment
User Comments (0)
About PowerShow.com