Title: Stretchable Electronics: Fundamental and Applied Aspects
1Stretchable Electronics Fundamental and Applied
Aspects
Motivation, Applications Physics of Wavy
Semiconductor Nanomaterials Bio-inspired
Device Designs Electronic Eye Cameras
Biomedical Devices Cardiac and Brain Monitors
John A. Rogers -- University of Illinois at
Urbana/Champaign Departments of Materials
Science and Engineering, Electrical and
Computer Engineering, Mechanical Science
and Engineering, and Chemistry Beckman
Institute Seitz Materials Research Laboratory
Contact jrogers_at_illinois.edu (217) 244-4979
http//rogers.mse.uiuc.edu/
2Moores Law Continues
2 billion transistors in 2008 (Intel, Tukwila)
3The Future of Electronics More than Moore
whats next?
4Large, Mechanically Flexible Sheets of Electronic
Paper
Philips/Polymervision
PNAS 98(9), 4835 (2001).
Science 291, 1502 (2001).
5Large Areas, Stretchable Substrates, Curved
Surfaces, High Perf.
6Mobilities of Printable Materials for Unusual
Electronics
?
Si
a-Si
GaAs
0.1
1
10
100
1,000
10,000
Carbon nanotubes High mobility, robust High
temp. growth, electr. heterogeneity
Polymers Solution processing Low performance
Small molecules Performance similar to
a-Si Vacuum dep.
Single crystals Study of intrinsic charge
transport Fragile, challenging integration
7Si Ribbons from Bulk Single Crystal Wafers
Sidewall passivation and anisotropic etch
Applied Physics Letters 88, 213101 (2006).
8Semiconductor Wires/Ribbons from Bulk Wafers
Silicon
Gallium Arsenide
1 µm
1 µm
50 µm
50 µm
Gallium Nitride
Indium Phosphide
10 µm
0.2 µm
200 µm
4 µm
9Transfer Printing Wires/Ribbons Stick and
Place
ribbons on device substrate
stamp
transfer print
ribbons on mother substrate
remaining ribbons mother substrate
10Transfer Printing by Kinetic Control of Adhesion
1. Prepare donor substrate apply rubber stamp
3. Apply inked stamp to receiving substrate
2. Quickly peel-back stamp grab objects off of
donor
4. Slowly peel-back stamp print objects onto
receiver
11Peel Rate Dependent Adhesion
Terminal Velocity on an Inclined Plane
12Roll Test Results
printing regime
retrieving regime
(actual speeds/energies are system-specific)
Nature Mater 5, 33 (2006).
13Griffiths Criteria Energy Based Arguments for
Interface Failure
applied force
G
Stamp
G
C
stamp
2.0
microstructure
Sub
G
C
substrate
Microstructure debonds from substrate
1.5
1.0
G
0
Stamp debonds from Microstructure
0.5
0.0
0.0
0.5
1.0
1.5
2.0
v
v
/v
c
0
Langmuir 23, 12555 (2007).
14(No Transcript)
15Printing onto Curved Surfaces Kinetically
Controlled Transfer
Si on plastic sheet
Si on magnifying glass
Nature Mater 5, 33 (2006).
16Single Crystal Silicon TFTs and Circuits on
Plastic
3mm Channel 2mm Overlap
350 MHz
VGS 1.8V VDS 2.0V
10 mm
IEEE Electron Dev. Lett., 27(6) 460 (2006).
17Single Crystal Silicon, GaAs Circuits on Plastic
Appl Phys Lett 87, 083501 (2005) Appl Phys Lett
88, 183509 (2006).
183D Electronics Printing for Deterministic
Assembly
3D, Heterogeneous Electronics on Flex
Si MOSFETs
SWNT TFTs
GaN HEMTs
Science 314, 1754 (2006)
19Bend and Fatigue Testing of ?s-Si Transistors on
Plastic
device
stage
Appl Phys Lett 86, 093507 (2005).
20Extreme Bendability Foldability In
Ultrathin Circuits
cover slip
Science 320, 507 (2008).
21A Stretchable Form of Single Crystal Silicon
Si
mother wafer
Bond elements to prestrained elastomeric substrate
PDMS
LdL
Peel back elastomer flip over
wavy Si
L
PDMS
Science 311, 208 (2006).
22Stretchable Single Crystal Silicon Wavy Si on
Rubber
10 mm
Science 311, 208 (2006).
23Wavy Silicon A High Perf Stretchable
Electronic Material
Science 311, 208 (2006).
24Buckling in 2D Silicon Nanomembranes Biaxial
Stretchability
Nano Lett 7, 1655 (2007).
25Wavy 2D Silicon Nanomembranes Biaxial
Stretchability
Nano Lett 7, 1655 (2007).
26Stretchable Silicon Integrated Circuits
Finite Element Modeling
Experiment
Science 320, 507 (2008).
27Stretchable Silicon Integrated Circuits
Science 320, 507 (2008).
0.5 mm
28Stretchable Silicon Integrated Circuits
0.5 mm
Science 320, 507 (2008).
29Stretchable Silicon Integrated Circuits
NMOS m 400 cm2/Vs
100 mm
PMOS m 120 cm2/Vs
Science 320, 507 (2008).
30Stretchable Si Nanoribbons on an Elastomeric
Substrate
Nature Nanotechn 1, 201 (2006).
31Unbreakable Silicon
500 mm
PNAS, in press
32Non-coplanar Serpentine Interconnects
0
140
90 prestrain
PNAS 105, 18675 (2008).
33Silicon ICs Wrapped On a Finger Tip
34Stretchable Electronics Creates New Device
Opportunities
biology
Biomedical Devices
Biomimetic Devices
electronics
Neural Monitors (w/ Litt)
Electronic Eye Cameras
0.5 cm
35Curved Focal Plane Arrays for Wide FOV Imagers
Human Eye
Electronic Eye
36Imaging With a Single, Plano-convex Lens
Planar CCD Camera
Ray Tracing
Nature, 454, 748-752 (2008).
37Electronic Eye via Stretchable Electronics
Nature 454, 748 (2008).
38Electronic Eye via Stretchable Electronics
1 cm
Nature 454, 748-753 (2008).
39Native and Enhanced Imaging Modes
Nature 454, 748-753 (2008).
40Electronic Eye Cameras via Stretchable Electronics
Nature 454, 748-753 (2008).
41Imaging Results Hemispherical cf Planar
Conventional
Electronic Eye
Nature, 454, 748-752 (2008).
42Electronic Eye Cameras via Stretchable Electronics
Nature, 454, 748-752 (2008).
43(No Transcript)
44(No Transcript)
45(No Transcript)
46Electronics For the Human Body
?
IEEE Intl. Symp. Ckts Sys (ISCAS 2008)
47Stretchable Electronics for Brain Monitoring
Recorded ECoG
Monitoring the Barrel Cortex in a Rat
to ACF computer
stretchable
unpublished
48Stretchable Electronics for Cardiac Monitoring
ACF
ribbon cable to computer
stretchable
EKG
49(No Transcript)
50Stretchable Electronics Fundamental and Applied
Aspects
Single crystalline inorganic semiconductor
ribbons, wires represent promising materials for
unusual electronics Printing-like techniques
can be used to form devices and circuits using
these materials as solid inks Wavy structural
versions of these materials reveal basic aspects
of thin film buckling physics, and provide a
route to stretchable electronics for
bio-inspired designs and biomedical devices
51Senior Collaborators
Prof. Y. Huang (Northwestern) mechanics
theory Prof. P. Ferreira (UIUC) printer
manufacturing systems Prof. R. Nuzzo (UIUC)
surface chemistry, soft lithography Prof. B. Litt
(U. Penn) cardiac, neural testing
52Acknowledgments
Funding
People
NSF Department of Energy Motorola DARPA Beckma
n MITRE Northrop Grumman Intel
53Electronic Eye via Stretchable Electronics
Nature, 454, 748-752 (2008).
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58Unbreakable Silicon ICs
PNAS, in press
59Unbreakable Silicon ICs
PNAS, in press
60(No Transcript)
61(No Transcript)
62Silicon Printer
63(No Transcript)
64Recent Other Work on Buckled Thin Film Systems
Pattern Formation
Stretchable Wires
Hutchinson, PNAS (2006)
Whitesides, Nature (1998)
Thin Film Metrology
Wagner, Proc. IEEE (2005)
Stafford, Nat. Mater. (2004)
65(No Transcript)
66(No Transcript)
67Unbreakable Silicon ICs
PNAS 105, 18675 (2008).