Title: Bounded Independence Fools Halfspaces
1Bounded IndependenceFools Halfspaces
- Emanuele Viola
-
- Northeastern University
- work partially done at Columbia University
- Joint work with
- Ilias Diakonikolas, Parikshit Gopalan,
- Ragesh Jaiswal, Rocco Servedio
- April 2009
2Halfspaces
- Halfspace (a.k.a. Threshold)
- h -1,1n ? -1,1
-
- h(x) sign(wx t) sign(w1x1
wnxn - t) -
- weights w1, , wn, t ? R
-
- Studied in complexity (NP ?? halfspace of
halfspaces) - learning (Perceptron,
Winnow, ...) - social choice
3Examples of halfspaces
- h -1,1n ? -1,1 h(x) sign(w1x1 wnxn
- t) - Majority(x) sign( x1 xn )
-
- AND(x) sign( x1 xn - n 1/2 )
- x gt y? sign( 2n(xn - yn) 2n-1(xn-1 - yn-1)
21(x1 - y1) ) - weights w1, , wn can be taken integer need wi gt
2n -
4Our results
- Def. Distribution D over -1,1n is k-wise
independent if - projection on any k coordinates is uniform
over -1,1k - Thm Any such D ?-fools any halfspace h -1,1n
? -1,1 -
- Ex?uniform h(x) - Ex?D h(x) ?
-
- where k (1/?)2 polylog(1/?)
- Optimal up to polylog(1/?)
- D (x1, x2, , xk, ?i?k xi, ) h(x)
sign(?i?k1 xi )
5Our results on generators
- k-wise independent distribution on -1,1n
- can be generated with s (log n)k random
bits - Alon Babai
Itai Chor Goldreich '85 -
- Corollary Explicit generator G -1,1s ?
-1,1n that - ?-fools any halfspace h -1,1n ? -1,1
-
- Ex?uniform h(x) - EY h(G(Y)) ?
-
- where s (log n)(1/?)2 polylog(1/?)
- First generator for halfspaces
6Our generator vs. others
- Our result Explicit generator G -1,1s ?
-1,1n that - ?-fools halfspaces h(x) sign(w1x1
wnxn - t) - with s (log n) poly(1/?)
- Nisan ('92) fools if weights wi ?
1,...,poly(n), S gt log2n - Rabani Shpilka ('08) G -1,1s ? -1,1n
- hits h-1(1) (when gt ?), does not fool, s
O(log n/?)
7Progress on generators 2005 - now
- Random walks Trevisan Vadhan Reingold
- Polynomials Bogdanov V., Lovett
- Constant-depth circuits Bazzi, Razborov,
Braverman - Halfspaces Rabani Shpilka, this talk
- Challenges (1) RL ? L
- (2) Fool width-3 read-once branching program,
s O(log n)
8Outline
- Overview and our results
- Proof
9Recall our result
- Def. Distribution D over -1,1n is k-wise
independent if - projection on any k coordinates is uniform
over -1,1k - Thm Any such D ?-fools any halfspace h -1,1n
? -1,1 -
- Ex?uniform h(x) - Ex?D h(x) ?
-
- where k (1/?)2 polylog(1/?)
10Proof overview
- Case analysis based on structure of halfspace
- Servedio 2007 Rabani Shpilka 2008
- Def. halfspace h(x) sign(wx - t)
sign(w1x1wnxn- t) - regular if every wi small w.r.t. (Si
wi2)1/2 (at most e frac.) - regular ? wx ? Normal(0, Si wi2)
- Berry-Esséen
11Outline
- Overview and our results
- Proof
- Regular halfspaces
- Non-regular halfspaces
12Sandwich approximation
- Lemma Bazzi, Benjamini Gurel-Gurevich Peled
- h -1,1n ? -1,1 is e-fooled by k-wise ind.
distributions - ?
- ? degree-k polynomials qu,ql -1,1n ? R
- (1) ql(x) ? h(x) ? qu(x) ? x ? -1,1n
- (2) EX ? -1,1nqu(X) h(X) ? e , Eh(X)
ql(X) ? e - Proof (?) If D k-wise independent, X uniform
-
- E h(D) E h(X)
- ? E qu(D) Eql(X) (1)
- ? E qu(X) Eql(X) because qu has
degree k - ? 2e (2)
Q.e.d.
13Construction of qu
- Build univariate P R?R approximator to sign
R?-1,1 -
-
-
-
- qu(x) P(w1x1
wnxn) - (t 0 and ignore
scaling)
1
0
wx
-1
14Properties of P
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Assuming P, we show how to fool regular h
15Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Want (1) h(x) ? qu(x) ? x (2) EXqu(X) h(X) ?
e
16Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Want (1) h(x) ? qu(x) ? x Given by (a)
Q.e.d.
17Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
L
-1
C
M
M
Want (2) EXqu(X) h(X) ? e - Pr wx ? C lt
e (c) h regular ( wx ?
normal) - wx ? M ? qu(X) h(X) lt e (b) - Pr
wx L lt e/qu(L)
Q.e.d.
18Construction of P Approximation Theory
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
P best uniform approximation to sign on M
(a) Chebychev alternation theorem
(b,c) Jackson theorem
19Outline
- Overview and our results
- Proof
- Regular halfspaces
- Non-regular halfspaces
20Non-regular halfspaces
- Halfspace h(x) sign(w1x1wnxn- t)
- Recall regular ? wi small w.r.t. (Si wi2)1/2
(at most e fraction) - Definition critical index minimum number of
variables - to fix to make halfspace regular
- Example
- Case analysis based on critical index vs. J
(1/e)2
critical index 3
21Case small critical index
-
- If h has small critical index lt J (1/e)2
- recall fool regular halfspace with (k
(1/e)2)-wise indep. - Claim (J k)-wise independent fools h
- Proof Fixing J variables ? halfspace regular and
-
still k-wise independence
-
Q.e.d.
22Case large critical index
- If h has large critical index gt J (1/e)2
- ? ? J large weights w1, , wJ
- Claim ? (J 2)-independent distribution
- with high probability x1, , xJ determine
outcome - Proof
- Uniform x1, , xJ ? w1 x1 wJ xJ large
- Other variables xgtJ still 2-wise independent
- ? wgtJ xgtJ concentrated ? rarely
changes outcome -
Q.e.d.
23Conclusion
- Thm k-wise indep. D ?-fool halfspaces h
-1,1n?-1,1 - E h(X) - E h(D) ?
for k (1/?)2 polylog(1/?) - Tight up to polylog(1/?)
- Corollary First generator G -1,1s ? -1,1n
that - ?-fools halfspaces seed s (log n)
(1/?)2 polylog(1/?) - Open Improve dependence on e. s O(log (n/e))
? - Higher degree? E.g. h(x)
sign(?wi,jxixj - t)
24