Realtime Watermarking Techniques for Sensor Networks - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Realtime Watermarking Techniques for Sensor Networks

Description:

Real-time Watermarking Techniques for Sensor Networks. Jessica Feng, Miodrag ... Watermarking: Graph Coloring. jessicaf_at_cs.ucla.edu '1010001010' Basic Concept ... – PowerPoint PPT presentation

Number of Views:190
Avg rating:3.0/5.0
Slides: 36
Provided by: csU5
Category:

less

Transcript and Presenter's Notes

Title: Realtime Watermarking Techniques for Sensor Networks


1
Real-time Watermarking Techniques for Sensor
Networks
Jessica Feng, Miodrag Potkonjak
Computer Science Dept., University of California,
Los Angeles
IST/SPIEs EI, Jan 2003
Santa Clara, California
jessicaf_at_cs.ucla.edu
2
Architecture of Sensor Networks
Power supply Sensor
Processor Memory Radio Actuator
jessicaf_at_cs.ucla.edu
3
Why Sensor Networks?
  • Marine Microorganisms
  • Contaminant Transport Monitoring
  • Habit Sensing Array
  • Seismic Monitoring

Bridge between the Internet and the physical world
jessicaf_at_cs.ucla.edu
Courtesy to http//www.cens.ucla.edu
4
Watermarking
Watermarking Embeds a secret message into a
cover message
jessicaf_at_cs.ucla.edu
Courtesy to http//www.dribbleglass.com/subpages/
counterfeit.htm
5
1010001010
6
Basic Concept
A
C
B
jessicaf_at_cs.ucla.edu
7
Basic Concept
A
C
B
jessicaf_at_cs.ucla.edu
8
(No Transcript)
9
Example Atomic Trilateration Process
L1 MAD-EAD MBD-EBD MCD-ECD
Measured vs. Estimated L2 (MAD-EAD)2
(MBD-EBD)2 (MCD-ECD)2 ½ L8 max ( (MAD -
EAD)/EAD , (MBD EBD)/EBD , (MCD
ECD)/ECD )   Where EAD (Dx - Ax)2 (Dy -
Ay)2 ½ Estimated distances EBD (Dx -
Bx)2 (Dy - By)2 ½ ECD (Dx - Cx)2 (Dy -
Cy)2 ½
jessicaf_at_cs.ucla.edu
10
Watermark Atomic Trilateration Process
Assigning Weight Factors
001010000100
jessicaf_at_cs.ucla.edu
11
Presentation Organization
  • Fundamental Requirements
  • Real-time watermarking techniques
  • During data acquisition
  • During data processing
  • Generic watermarking procedure
  • Example trajectory motion
  • Experimental results and comparisons of different
    watermarking techniques and parameters

jessicaf_at_cs.ucla.edu
12
Fundamental Requirements
  • Quality of solution before vs. after watermarking
  • Low overhead
  • Runtime
  • Robustness
  • Resilience against attacks
  • No significant change in meaning or function of
    the original data

jessicaf_at_cs.ucla.edu
13
New Idea Real-time Watermarking Techniques
  • Impose additional constraints during data
    capturing or sensor data processing as suppose to
    post-processing watermark techniques

Strength of authorship
Accuracy
jessicaf_at_cs.ucla.edu
14
Where Can Watermarking Take Place?
jessicaf_at_cs.ucla.edu
15
Watermarking Technique 1
During Data Acquisition
  • Impose constraints on intrinsic conditions such
    as
  • Location
  • Orientation on sensors
  • Time management
  • Resolution
  • Intentional addition of obstacles
  • Use of actuators
  • Where?
  • Each individual sensor node
  • Properly selected collection of nodes

jessicaf_at_cs.ucla.edu
16
Watermarking Technique 1
During Data Acquisition
  • Impose constraints on intrinsic conditions such
    as
  • Location
  • Orientation on sensors
  • Time management
  • Resolution
  • Intentional addition of obstacles
  • Use of actuators
  • Where?
  • Each individual sensor node
  • Properly selected collection of nodes

jessicaf_at_cs.ucla.edu
17
Watermarking Technique 1
During Data Acquisition
  • Impose constraints on intrinsic conditions such
    as
  • Location
  • Orientation on sensors
  • Time management
  • Resolution
  • Intentional addition of obstacles
  • Use of actuators
  • Where?
  • Each individual sensor node
  • Properly selected collection of nodes

jessicaf_at_cs.ucla.edu
18
Watermarking Technique 1
During Data Acquisition
  • Impose constraints on intrinsic conditions such
    as
  • Location
  • Orientation on sensors
  • Time management
  • Resolution
  • Intentional addition of obstacles
  • Use of actuators
  • Where?
  • Each individual sensor node
  • Properly selected collection of nodes

jessicaf_at_cs.ucla.edu
19
Watermarking Technique 2
During Data Processing
  • Three degrees of freedom
  • Error minimization procedures
  • Maximal consistency vs. strong strength of
    signature
  • Physical world model building
  • Additional constraints during the model building
  • Solving computationally intractable problems
  • NP-completeness
  • High quality solution vs. strength of the
    signature

jessicaf_at_cs.ucla.edu
20
Generic Multi-sensor Fusion Model
jessicaf_at_cs.ucla.edu
21
Generic Watermarking Procedure
jessicaf_at_cs.ucla.edu
22
Trajectory Motion
  • Known values
  • Velocity, acceleration, angle, time interval,
    measured distances, coordinates of 3 nodes
  • Unknown variables
  • Trajectory path (coordinates of node at each
    discrete time instance)

jessicaf_at_cs.ucla.edu
23
Watermark Trajectory Motion
Time instance 2
  • System of non-linear equations
  • dobj,a ((xa xobj,0)2 (ya yobj,0)2)1/2
  • dt0?t1 (Vobj,0) ?t aobj,0/2 (?t)2
  • Vobj,1 Vobj,0 (aobj,0) ?t
  • xobj,1 (dt0?t1) cos(?obj,0) xobj,0
  • yobj,1 (dt0?t1) sin(?obj,0) yobj,0
  • Error associated with unknown variables
  • ?1 xobj,0
  • ?2 yobj,0
  • ?3 xobj,1
  • ?4 yobj,1
  • ?5 xobj,2
  • ?6 yobj,2

jessicaf_at_cs.ucla.edu
24
Watermark Trajectory Motion
  • Rewrite system of equations with errors
  • OF min ?1 ?2 ?3 ?4 ?5
    ?6
  • st dobj,a ((xa xobj,0) (ya
    yobj,0))1/2
  • dt0?t1 (Vobj,0) ?t aobj,0/2 (?t)
  • Vobj,1 Vobj,0 (aobj,0) ?t
  • xobj,1 (dt0?t1) cos(?obj,0) xobj,0
  • yobj,1 (dt0?t1) sin(?obj,0)
    yobj,0
  • xobj,0 Exobj,0 ?1
  • yobj,0 Eyobj,1 ?2
  • xobj,0 Exobj,0 ?3
  • yobj,1 Eyobj,1 ?4
  • xobj,0 Exobj0 ?5
  • yobj,1 Eyobj,1 ?6

jessicaf_at_cs.ucla.edu
25
Watermark Trajectory Motion
  • Impose additional constraints/ Alter the OF
  • OF min ?1 ?2 ?3 ?4 ?5
    ?6
  • st dobj,a ((xa xobj,0) (ya
    yobj,0))1/2
  • dt0?t1 (Vobj,0) ?t aobj,0/2 (?t)
  • Vobj,1 Vobj,0 (aobj,0) ?t
  • xobj,1 (dt0?t1) cos(?obj,0) xobj,0
  • yobj,1 (dt0?t1) sin(?obj,0)
    yobj,0
  • xobj,0 Exobj,0 ?1
  • yobj,0 Eyobj,1 ?2
  • xobj,0 Exobj,0 ?3
  • yobj,1 Eyobj,1 ?4
  • xobj,0 Exobj0 ?5
  • yobj,1 Eyobj,1 ?6

1?1 4?2 2?3
jessicaf_at_cs.ucla.edu
26
Watermark Trajectory Motion
  • Impose additional constraints/ Alter the OF
  • OF min
  • st dobj,a ((xa xobj,0) (ya
    yobj,0))1/2
  • dt0?t1 (Vobj,0) ?t aobj,0/2 (?t)
  • Vobj,1 Vobj,0 (aobj,0) ?t
  • xobj,1 (dt0?t1) cos(?obj,0) xobj,0
  • yobj,1 (dt0?t1) sin(?obj,0)
    yobj,0
  • xobj,0 Exobj,0 ?1
  • yobj,0 Eyobj,1 ?2
  • xobj,0 Exobj,0 ?3
  • yobj,1 Eyobj,1 ?4
  • xobj,0 Exobj0 ?5
  • yobj,1 Eyobj,1 ?6

0?1 2?2 2?3 0?4 1?5 0?6
jessicaf_at_cs.ucla.edu
27
Watermark Trajectory Motion
  • Impose additional constraints/ Alter the OF
  • OF min ?1 ?2 ?3 ?4 ?5
    ?6
  • st dobj,a ((xa xobj,0) (ya
    yobj,0))1/2
  • dt0?t1 (Vobj,0) ?t aobj,0/2 (?t)
  • Vobj,1 Vobj,0 (aobj,0) ?t
  • xobj,1 (dt0?t1) cos(?obj,0) xobj,0
  • yobj,1 (dt0?t1) sin(?obj,0)
    yobj,0
  • xobj,0 Exobj,0 0?1
  • yobj,0 Eyobj,1 2?2
  • xobj,0 Exobj,0 2?3
  • yobj,1 Eyobj,1 0?4
  • xobj,0 Exobj0 1?5
  • yobj,1 Eyobj,1 0?6

jessicaf_at_cs.ucla.edu
28
Experimental Results
Watermarking the Atomic Trilateration Process
  • 3 Watermarking techniques applied
  • Flipping the LSB
  • Assigning weight factors
  • Hamming distance
  • Coordinates limit 0,1
  • Coordinates generation
  • Uniform distribution on interval 0,1
  • Error generation
  • Gaussian/Normal distribution (0,1)

jessicaf_at_cs.ucla.edu
29
Experimental Results
Various Resolution and Sigma
Correctness
Authorship Strength
jessicaf_at_cs.ucla.edu
30
Experimental Results
Correctness based on Resolution Before vs. After
Watermarking
Technique 1
Technique 3
Technique 2
jessicaf_at_cs.ucla.edu
31
Experimental Results
Correctness based on Sigma Before vs. After
Watermarking
Technique 1
Technique 3
Technique 2
jessicaf_at_cs.ucla.edu
32
Experimental Results
Correctness 2D vs. 3D
Technique 1
Technique 3
Technique 2
jessicaf_at_cs.ucla.edu
33
Experimental Results
Authorship Strength 2D vs. 3D
 


Technique 1
Technique 3
Technique 2
jessicaf_at_cs.ucla.edu
jessicaf_at_cs.ucla.edu
34
Future Directions
  • Fingerprinting
  • Watermarking protocols
  • Static modeling
  • Probabilistic modeling
  • Watermarking in other domains
  • General intellectual property protection (IPP)
    techniques computational security issues

jessicaf_at_cs.ucla.edu
35
Conclusion
  • Sensor network The bridge between physical
    phenomenon and the Internet
  • Significant need of Intellectual property
    protection (IPP) and security issues
  • Real-time watermarking
  • During data capturing
  • During data processing
  • Preliminary study shows effectiveness

jessicaf_at_cs.ucla.edu
Write a Comment
User Comments (0)
About PowerShow.com