Extensible Simulation of Planets and Comets - PowerPoint PPT Presentation

About This Presentation
Title:

Extensible Simulation of Planets and Comets

Description:

Dr. Paul Kalas (UC Berkeley) confirms that Fomalhaut b orbits it's parent star1. ... Fashioned after well known Integrated Development Environments (IDEs)? Projects ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 20
Provided by: nataliewi
Category:

less

Transcript and Presenter's Notes

Title: Extensible Simulation of Planets and Comets


1
Extensible Simulation of Planets and Comets
  • Natalie Wiser-Orozco
  • Dr. Keith Evan Schubert
  • Dr. Ernesto Gomez
  • Dr. Richard J. Botting
  • July 22, 2009

2
Exoplanet Discovery
  • Dr. Paul Kalas (UC Berkeley) confirms that
    Fomalhaut b orbits it's parent star1.
  • Increased frequency of discoveries of this
    nature.
  • Questions that arise as a result.

3
Movement of Objects In Space
  • Carl Sundman 3-body
  • Qiu-Dong Wang n-body
  • Solar system stability

4
Simulation of Objects In Space
  • Computational power
  • Existing simulators focus on
  • Pre-determined sets of bodies
  • Specific algorithm or method
  • Extensible Simulator
  • Arbitrary number of bodies
  • Choose different numerical methods and
    gravitational functions.

5
Overview Of The Extensible Simulator
  • Numerical Methods and Gravitational Functions
  • Project Structure and Management
  • Visualizations
  • Cameras
  • Bodies
  • Heuristics
  • Results and Future Work

6
Numerical Methods
  • Taylor Series derivatives of original function
  • Runge-Kutta finite difference approximations
  • Extrapolation very accurate, inefficient
  • Multistep needs help of a single-step method
  • Multivalue easy to change step size

7
Gravitational Solutions
  • Law of Universal Gravitation (Newton)?
  • General Relativity (Einstein)?
  • Quantum Gravity (String Theory, M Theory)?
  • Solar Wind
  • Different classes of numerical techniques
  • Particle-Particle
  • Particle-Mesh
  • Particle-Particle/Particle-Mesh (P3M)?
  • Particle-Multi-Mesh(PM2)?

8
Simulation Flexibility
  • No one technique handles all
  • Try different techniques on the same data
  • Extensible Simulator allows for any technique
  • Limited only by what is implemented, therefore
    limitless.

9
Project Management
  • Fashioned after well known Integrated Development
    Environments (IDEs)?
  • Projects
  • Body Configuration Files

10
Project Functions
  • Project Functions
  • Create/Edit New Project
  • Add/Edit Body Configuration Files
  • Choose Gravitational Function/Numerical Method
  • Calculate / Simulate

11
Simulation Screen-shots
12
Visualization and Heuristics
  • Application Programming Interface
  • Cameras
  • Bodies
  • Scene Navigation
  • Heuristics
  • Body Scaling

13
Application Programming Interface
  • Base Body and Camera objects
  • Body and Camera wrapper objects
  • Manager objects
  • Work together to help the simulation run smoothly

14
Scene Navigation
  • Built in navigation
  • Extensible navigation via camera implementation

15
Body Scaling
16
Results
  • Error analysis yielded accuracy to an average of
    2 significant digits
  • Aim of research
  • Extensibility of numerical methods, gravitational
    functions, cameras and bodies
  • Appeal to all levels of knowledge
  • Convey ideas and discoveries with confident
    results

17
Facilitate Future Research
  • Programmatic Video Capture
  • Additional Numeric Methods
  • Additional Dynamics Equations
  • GPGPU Integration
  • Other general improvements

18
References
  1. Paul Kalas et al. Optical Images of an Exosolar
    Planet 25 Light-Years from Earth Science
    (322)1345-1348, November 2008
  2. Michael T. Heath. Scientific Computing, An
    Introductory Survey. McGraw-Hill, Second Edition,
    2002.
  3. E. Saar I. Suisalu A. Klypin A. Melott, J.
    Einasto and S. Shandarin. Cluster analysis of the
    nonlinear evolution of large scale structure in
    an axion/gravitino/photino dominated universe.
    Physical Review Letters, (51)935, 1983.
  4. Srinivas Aluru. Greengards n-body algorithm is
    not order n. SIAM Journal on Scientific
    Computing, 17(3), May 1996.
  5. A.W. Appel. An efficient program for many- body
    simulation. SIAM J. Sci. Stat. Comput.,
    (6)85103, 1985.
  6. J. S. Bagla. Cosmological N-Body simulation
    Techniques, Scope and Status. Current Science,
    8810881100, April 2005.
  7. J. Barnes. A modified tree code Dont laugh it
    runs. J. Comput. Phys., (87)161170, 1990.
  8. J. Barnes and P. Hut. A hierarchical o(n log n)
    force-calculation algorithm. Nature,
    (324)446449, 1986.
  9. M. Davis, G. Efstathiou, C. Frenk, and S.D.M.
    White. The evolution of large-scale structure in
    a universe dominated by cold dark matter. ApJ,
    (292)371394, 1985.
  10. D. J. D. Earn and J. A. Sellwood. The Optimal
    N-Body Method for Stability Studies of Galaxies.
    The Astrophysical Journal, 451533, October
    1995.
  11. Sergio Gelato, David F. Chernoff, and Ira
    Wasserman. An adaptive hierarchical particle-mesh
    code with isolated boundary conditions. ApJ, May
    1997.
  12. L. Greengard and V. Rokhlin. A fast algorithm for
    particle simulations. J. Comp. Phys.,
    (73)325348, 1987.
  13. Randall Splinter. A nested grid particle-mesh
    code for high resolution simulations of
    gravitational instability in cosmology. MNRAS,
    (281), 1996.
  14. K.F. Sundman. Memoire sur le probleme des trois
    corps. Acta Math., (36)105179, 1913.
  15. Qiu-Dong Wang. The global solution of the n-body
    problem. Celestial Mechanics and Dynamical
    Astronomy, 50(1)7388, 1991.
  16. M.S. Warren and J.K. Salmon. Astrophysical n-body
    simulations using hierarchical tree data
    structures. In Proc. Supercomputing 92, pages
    570 576, 1992.
  17. M.S. Warren and J.K. Salmon. A parallel hashed
    oct-tree n-body algorithm. In Proc.
    Supercomputing 93, pages 112, 1993.
  18. Dr. Bernd Wirsing. Supercomputer simulations
    explain the formation of galaxies and quasars in
    the universe, June 2005.
  19. F. Zhao and L. Johnsson. The parallel multipole
    method on the connection machine. SIAM. J. Sci.
    Stat. Comput., (12)14201437, 1991.

19
Q A
  • Code is open source and can be found here
  • http//code.google.com/p/extensiblesimulationof
    planetsandcomets/
Write a Comment
User Comments (0)
About PowerShow.com