Title: New Design
1Parts Table from MWSU
2Modeling Random Pancake Flipping
Change the words
3Modeling 8 Stacks of 2 Pancakes
( 1 2) (-1 2) ( 1 -2) (-1 -2)
( 2 1) (-2 1) ( 2 -1) (-2 -1)
4Modeling 8 Stacks of 2 Pancakes
Solution is (1, 2) or (-2, -1)
( 1, -2) (-1, 2) (-2, 1) ( 2, -1)
(-1, -2) ( 2, 1)
5Modeling 8 Stacks of 2 Pancakes
Solution is (1, 2) or (-2, -1)
( 1, -2) (-1, 2) (-2, 1) ( 2, -1)
(-1, -2) ( 2, 1)
6Modeling 384 Stacks of 4 Pancakes
2n (n!) X Combinations 24 (4!) 384
Combinations
7Modeling 384 Stacks of 4 Pancakes
Build one representative of each family
8Define a Biological Pancake
Tet
Nonfunctional
RBS
RE
hixC
pBad
hixC
hixC
pancake 1
pancake 2
Tet
Functional
RBS
RE
pBad
hixC
hixC
hixC
pancake 1
pancake 2
9One Pancake Constructs
PredictedTet Resistance
Observed Tet Resistance
(1) 2
(-1) 2
-
1 (2)
1 (-2)
-
10Detect Flipping via Restriction Digest
NheI
NheI
ExpectedFragment Size
(1) 2
200 bp
(-1) 2
300 bp
1 (2)
200 bp
1 (-2)
1100 bp
11Hin-mediated Flipping
Tet Pancake Flipping
pBad Pancake Flipping
1 (2) Hin
(1) 2 Hin
1 (-2)
(-1) 2
1 (2)
(1) 2
12Read-Through Blocked by pSB1A7
Observed Tet Resistancein pSB1A3 (1) 2
(-1) 2 1 (2) 1 (-2)
13Read-Through Blocked by pSB1A7
Observed Tet Resistancein pSB1A3 (1) 2
(-1) 2 1 (2) 1 (-2)
Observed Tet Resistancein pSB1A7 (1) 2 -
(-1) 2 1 (2) - 1 (-2)
14Original Design Problems
15Original Design Problems
16Original Design Problems
17Two-Plasmid Solution
- 1 Two pancakes (Amp vector)
- 2 AraC/Hin generator (Kan vector)
Tet
RBS
pSB1A7
hixC
hixC
hixC
pBad
AraC PC
Hin LVA
RBS
pSB1K3
pLac
18Biological Equivalence Problem
(1,2)
LB Amp Kan Tet
(-2,-1)
19Biological Equivalence Solution
(1,2)
(1,2)
LB Amp Kan Tet
(-2,-1)
(-2,-1)
20Eight Two-Pancake Stacks
(2,1)
(1,2)
(2,-1)
(1,-2)
(-1,2)
(-2,1)
(-1,-2)
(-2,-1)
21Results
22CONCLUSIONSConsequences of DNA Flipping Devices
-1,2 ? -2,-1 in 2 flips!
PRACTICAL Proof-of-concept for bacterial
computers Data storage n units gives 2n(n!)
combinations BASIC BIOLOGY RESEARCH Improved
transgenes in vivo Evolutionary insights
23Next Steps
Better control of kinetics Slow down Hin
activity Determine x flip seconds-1 Size
bias? Improved insulating vector Accepts
B0015 double terminator Bigger pancake
stacks
Number of flips vs.Time?
Number of flips
Time
24Summary What We Learned
Multiple campuses increase capacity with
parallel processing Collective
Troubleshooting Size does not matter (College
vs. University)
25Summary What We Learned
Math and Biology mesh really well Math
modelingWe proved a new theorem! Challenges of
biological components
26 But above all
We had a flippin good time!!!
27Extra Slides gtgtgt
28Modeling Random Flipping
for trial 1 to n trials stack
input_stack flips 0 while stack
1k flips flips 1 int choose_random_interv
al stack stack(1(int(1)-1)) -1
fliplr(stack(int(1)int(2)))
stack(int(2)1k) end end
29Flip length 1
Flip length 2
30(No Transcript)
31(No Transcript)
32Modeling 384 Stacks of 4 Pancakes
10 combinations 1 flip from solution 10 chance
33Effect of Plasmid Copy Number
Change the words