ConstantRound Private Database Queries - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

ConstantRound Private Database Queries

Description:

b, x1,x2,...,xn ? {0,1}k. Run a PKS for every prefix of b. jth query = j-bit prefix of b ... ri = PKSA(bi ,D) for 1 i k. Randomly permute (r1, r2, ... ,rk) and send ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 20
Provided by: pay1
Category:

less

Transcript and Presenter's Notes

Title: ConstantRound Private Database Queries


1
Constant-Round Private Database Queries
  • Nenad Dedic and Payman Mohassel

Boston University
UC Davis
2
Outline
  • Introduction
  • Element rank protocol
  • Other protocols
  • Equivalence to one-round PIR
  • Open problems

3
Succinct Computation
  • Computing f(x,y)
  • One round of interaction
  • Communication Complexity
  • q a O(poly(log(x), log(y), f(x,y),
    s))
  • Or linear in f(x,y)

4
Privacy
  • Computational setting
  • Client side
  • For any x, x, Q(x) and Q(x) are
    indistinguishable
  • Server side
  • Simulator S, simulates A(x,y) given x and f(x,y)
  • Semi-honest adversaries

5
Private Database Queries
  • Servers input is a database
  • Clients input is a query
  • Private information retrieval (PIR)
  • f(i, (x1,x2,,xn)) xi
  • Private Keyword search (PKS)
  • f(w, (x1,v1),,(xn,vn))

va if there is xa w
otherwise
-
6
Existing Solutions
  • PIR / SPIR
  • KO97, Lipmaa05,
  • One-round, sublinear communication
  • PKS
  • FIPR05
  • One-round, polylog(n) communication
  • PIR and homomorphic encryption
  • How about more general queries?

7
More General Queries
  • General MPC
  • Not efficient
  • Circuits with look-up tables NN01
  • Communication efficient
  • High round complexity
  • One-round secure computation CCKM00
  • Round efficient
  • High comm.
  • Computing BP on encrypted data IP07
  • Independent work
  • Round and communication efficient
  • Strong assumption

8
Private Element Rank
  • Interval Labeling
  • f(b, (x1,x2,,xn,v1,,vn))
  • vi such that b ? (xi, xi1
  • Element Rank
  • Add x0 -8 and xn18
  • vi i
  • Applications
  • Ranking in auctions
  • Online testing services
  • Use to design other protocols

9
Interval Labeling Protocol
  • b, x1,x2,,xn ? 0,1k
  • Run a PKS for every prefix of b
  • jth query j-bit prefix of b
  • Create and use a database D

10
Interval Labeling Protocol
D (000,v0),(001,v1),(0100,v1) ,
(0101,v2),(011,v2),(100,v2),(101,v3),(11,v4)
11
Interval Labeling Protocol
b 1000
b1 1
b2 10
b3 100
b4 1000
D (000,v0),(001,v1),(0100,v1) ,
(0101,v2),(011,v2),(100,v2),(101,v3),(11,v4)
12
Interval Labeling Protocol
  • w is w with last bit flipped
  • Database D, where D 2kn
  • For every 1 j k, let w be j-bit prefix of xi
  • Add (w,vi) to D if
  • w0k-j, w1k-j xi,xi1 , but
    not true for w
  • Add (w,vi) to D if
  • w0k-j, w1k-j xt ,xt1 , but not
    true for w
  • Prefixes of xis and/or their siblings

13
Interval Labeling
  • ri PKSA(bi ,D) for 1 i k
  • Randomly permute (r1, r2, ,rk) and send
  • Decode retrieve the only ri ? - in the list
  • One round, polylog(n) communication
  • Reduced to PKS

14
Other Protocols
  • Private Rectangle Labeling
  • Which rectangle is query point in?
  • Extension to higher dimensions
  • One round
  • Private Range Queries
  • Retrieve all the points in the range
  • On a line or in a plane
  • Constant round
  • Comm. proportional to number of retrieved points

15
Other Protocols
  • mth ranked element
  • Alice holds database A
  • Bob holds database B
  • Find mth ranked element in (A U B)
  • AMP04, O(log(m)) rounds, and sublinear comm.
  • We use our rank protocol as subprotocol
  • O(log(log(m))) rounds
  • Still sublinear comm.

16
PKS to PIR
  • FIPR05
  • Database
  • Hash function h 0,1n 0,1n/log(n)
  • Hash keywords (xis) to n/log(n) bins
  • Create degree log(n) polynomials for each bin
  • Client
  • Compute h(w)
  • Send E(h(w)) , E(h(w)2), , E(h(w)log(n))
  • Database evaluates all polynomials at h(w)
  • Client gets one result via PIR

f(w, (x1 ,v1),,(xn ,vn ))
17
PKS to PIR
  • Assumption One-round PIR
  • Replace polynomials with Yaos garbled circuit
  • Circuit of size O(polylog(n)) size
  • Yaos protocol
  • Pseudorandom function, OT
  • Can be reduced to one-round PIR
  • CMO00, BIKM99
  • One-round PKS one-round PIR
  • One-round Rank one-round PKS

18
Open Problems
  • Succinct Computation of
  • Branching programs (not length-bounded)
  • General circuits
  • Reduction to one-round PIR
  • Any special functionality
  • Decision trees
  • Branching programs

19
Thank you!
Write a Comment
User Comments (0)
About PowerShow.com