Title: Environmental Change and
1Environmental Change and Altered Marine Food
Webs cont.
- Ozone Hole
- coastal Antactica (what is a problem?)
- can we solve anything?
- Eutrophication
- I. Easy Interpretation?
- II. Easy answers? Point and nonpoint
- Past Big changes?
Oscar Schofield (oscar_at_ahab.rutgers.edu)
2OZONE HOLE
3advection
stratification
stratification
12
1.6
1.2
8
Production (mg C mg chl a-1 h-1)
Growth Rate (day -1)
0.8
4
0.4
0
0
330
350
05
25
45
65
Julian Day
41.6
12000
10000
1.2
8000
Chlorophyll a (mg m -3)
0.8
6000
Growth Rate (day -1)
4000
0.4
2000
0
0
345
365
25
45
65
Julian Day
5Large Scales Processes
Antarctic Ozone Hole
1993
1992
6(No Transcript)
7(No Transcript)
8(No Transcript)
9Absorption spectrum for Antarctic Ice Algae
0.012
0.01
0.008
aph ( m2 mg chl a-1)
0.006
0.004
0.002
0
wavelength (nm)
10(No Transcript)
11(No Transcript)
1260
O m
5 m
gt5 m
40
20
UVB Inhibition of PPAR by UVB
0
-20
0.08
0.06
0.04
0.02
0
(Ein m-2)
Smith et al., 1992 Science
13Station B at Palmer Station Antarctica 1991-1992
0
0.8
0.7
10
0.6
20
0.5
Depth (m)
0.4
30
0.3
40
0.2
50
0.1
0
60
330
350
015
030
045
060
14(No Transcript)
15bright light flash
medium light levels
Fm - Fo Fv
darkness
Ft some RCII closed, probability
of fluorescence is variable
FO all RCII open, probability of
fluorescence is low
Fm all RCII closed, probability
of fluorescence is high
16(No Transcript)
17Impact of UV-radiation on the quantum yield of
stable charge separations at photosystem II in
Antarctic ice algae
fIIeo
PAR
UVA PAR
UVB UVA PAR
1400
600
1000
1800
Local Daylight Time
18Potential Photosystem II activity for Antarctica
ice algae on 10/01/1993
PAR
PAR UVA
PAR UVA UVB
Time-integrated charge separations at PS II
1400
1200
600
800
1000
1600
1800
2000
Local Daylight Time
19PAR
20Euthrophication
21Eutrophication Point sources sewage pipes, you
can close the one point. Human Population
centers Non point sources Watershed,
atmosphere, etc.
22Hypoxia/Anoxia Bottom Bathymetry
Warsh NOAA 1989
23Modeled Effect of Bathymetric Variability on
Upwelling
1 m/s current velocity
Along shore subsurface deltas cause upwelling to
be 3d, not 2d.
North
wind
Barnegat delta
LEO delta
Cape May delta
24Physical Forcing of Hypoxia in Mid-Atlantic Bight
Temp (oC)
15 16 17 19 21 22 23
40N
Chl a 1.2 mg m-3
0.5 mg m-3
39N
Glenn et al. Biogeochemistry of Upwelling in
Mid-Atlantic Bight JGR submitted
Chang et al. JGR 10.1029/2001JC001018.
25Courtesy of Hans Graber, Rich Garvine, Bob Chant,
Andreas Munchow, Scott Glenn and
Mike Crowley
26 New Jersey Coastal Upwelling
Barnegat
Cape May
27Upwelling can account for the historical patterns
of hypoxia along the NJ shore
28Spatially Explicit Global Models Of Nutrient
Export To Coastal Systems
Sybil Seitzinger John Harrison (Post-doc)
GLOBAL NEWS
MODEL INPUTS
MODEL OUTPUT
Average DIN yield by watershed (kg N/km2/yr)
Hydrology
N, P, Si
- dissolved inorganic
- dissolved organic
- particulate
Anthropogenic Activities
- OTHER INPUTS
- Slope
- Soil CN
- P Fertilizer
- Human Population
- Animal Manure
- Etc.
Effects on Coastal Ecosystems
Funding Sources UNESCO-IOC NSF NOAA SEAGRANT
29Model Calculation of NO3 Export by Rivers
( Modified from Caraco and Cote 1999 Seitzinger
and Kroeze 1998)
30 N Fertilizer Use
STN Model Predicted Runoff (mm/yr)
(kg N/km2/yr)
Model Input
Total N Fertilizer (kg/N/km2/yr)
Mean Runoff (mm/yr)
0
0
1 - 530
1 - 63
531 - 931
64 - 145
932 - 2151
146 - 185
2152 - 2672
Data Sources Vorosmarty et al
2003 RIVM Dentener, pers. comm.
186 - 247
2673 - 3133
248 - 304
3134 - 4664
305 - 420
4665 - 5138
421 - 541
5139 - 5795
542 - 699
5796 - 40023
700 - 2095
Atmospheric Deposition (NOy) (kg N/km2/Yr)
Population Density
(individual/km2)
NOy (kg N/km2/Yr)
56 - 135
Pop Density (indiv/km2/ws)
136 - 198
0 - 3
4 - 18
199 - 252
19 - 29
253 - 304
30 - 42
305 - 342
43 -59
343 - 382
60 - 83
383 - 439
84 - 103
440 - 512
104 - 138
139 - 237
513 - 651
238 - 965
652 - 902
31Modeled vs Measured DIN Export by Mediterranean
Rivers
Rhone
Po
Ebro
Axios
Adige
Var
Arno
Segura
Pinios
Data European Envir. Agency
32DIN Export from Watersheds
(kg N 10E6/basin/yr)
33Chlorophyll a from SeaWiFS (mg/m3) 2002
34DIN Export vs Coastal Chl a for 6 Sub-regions of
the Mediterranean
35BIG CHANGES IN THE PAST?
36Delwiche, C.F. (1999) Tracing the thread of
plastid diversity through the tapestry of life.
Am. Nat. 154 5164-77.
37 Phytoplankton in the geological record
Green lineage
Red lineage
Prymnesiophytes
Species diversity/abundance (relative scale)
Dinoflagellates
Prasinophytes Chlorophytes
?
Diatoms
Carbon. Permian Triassic Jurassic Cretaceous
Tertiary
PALEOZOIC MESOZOIC CENOZOIC
38Elemental composition of phytoplankton
Macronutrients
- In 1934, Alfred Redfield recognized that there is
a remarkable similarity between the NP ratio in
the organic matter of plankton and the
corresponding ratio of NO3- and PO43- in
seawater C106 N16 P 1.
- NP ratio gt or lt than 16 is used as an
indicator - of nitrogen or phosphate limitation.
39(No Transcript)
40Mean size of diatom community
41(No Transcript)
42Sea level and the size of diatoms
R 0.74
43A potential climatic feedback
The evolution of large diatoms in a Hothouse world
Increase the efficiency of the biological pump
Decreased drawdown of CO2, warming
Drawdown of CO2 and climatic cooling, and
decreased shelf area
Small cells decrease efficiency of biological pump
Radiation of small diatoms in response to reduced
shelf area and low CO2
44(No Transcript)