Title: 3D fast reflectorless tomographic
13-D fast reflectorless tomographic migration
velocity analysis
Weihong Fei and George A. McMechan
3/3/2005
2Outline
3Introduction
- An accurate interval velocity model is crucial
- for depth imaging
- Conventional migration velocity analysis is
very - time-consuming for 3-D data and needs
extensive - event picking
- In the proposed algorithm
- Picking is limited to only one common-offset or
zero-offset section - Computation time for each iteration is fast
- Convergence is fast
4Algorithm
- Incident angle estimation and parsimonious
migration
- Ray-tracing to define the CRP gathers
- Velocity update estimation for each CRP gather
- Composite velocity model update
5- Step 1 Incident angle estimation and
- parsimonious migration
- 1. Selecting reference common-offset or stacked
section - 2. Positions of the salient reflections are
picked automatically - on the selected section
- 3. Estimate p values for the picked events
6P-value estimation for reference section
or
Zero-offset section
Common-offset section
Within each shot Px in streamer line
direction Py in receiver direction
Px in inline direction Py in crossline direction
3-D parsimonious poststack migration
3-D parsimonious prestack migration
Spatial locations and orientations of reflection
points
7- Step2 Common-Reflection Point Gather
- Extraction
- Two rays that have the same angle with respect
to the - zero-offset ray, and with azimuth that
satisfies Snells - law, are shot to the surface
- On the basis of the surface intersections of the
two rays, - extract the corresponding CRP trace
- Change the azimuth and angle to repeat the
process - to provide a complete CRP gather
8y
r
s
x
z
9CRP gather extraction
T
Tcal
10- Step3 Velocity perturbation for each CRP gather
1) TnewTcal2?lsin(?)/v0
Offset
2) T?Tnewv1/v0
Time
Position
sn
rn
T
Tcal
?
Depth
11- Step4 Composite velocity model update
a) The estimated velocity updates for each CRP
gather are back projected along the ray
paths associated with the CRP gather
b) Averaging of all the predicted updates in each
pixel gives the update for that pixel for
the current iteration
12The same tomographic constraint strategy is used
in 3-D as in 2-D
Position (km)
Time (s)
13Synthetic example
Velocity model size X 14 km Y 4 km Z 3
km
140.0
Time (s)
1.0
2.0
4.0
3.0
14.0
12.0
2.0
10.0
8.0
Zero-offset sections
X position (km)
1.0
6.0
Y position (km)
4.0
2.0
0.0
0.0
0.0
0.5
Time (s)
1.0
1.5
14.0
2.0
12.0
4.0
10.0
3.0
8.0
6.0
2.0
X position (km)
Y position (km)
4.0
1.0
2.0
0.0
0.0
15Position (km)
Missing reflection
Traveltime (s)
16Position (km)
Depth (km)
17Modeling Geometry
- Sources are on 20 lines with 200 meter spacing.
- Each shot line has 72 shots with interval 200
meters.
3.2 km
- 11 streamers with interval 40 meters
- Each streamer has 81 receivers with
- interval 40 meters
Shot position
Total traces 1,283,040
18One common-shot gather
0.0
0.5
Time (s)
1.0
1.5
2.0
0.4
0.3
3.0
0.2
2.0
Y position (km)
0.1
1.0
Offset (km)
0.0
0.0
19correct velocity model
0.0
1.0
Depth (km)
12.0
2.0
Slice positions X 2.5 km Y 0.5 km Z 0.7 km
11.0
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
4.0
1.0
3.0
Y position (km)
0.0
2.0
estimated velocity model
0.0
Problem?
1.0
Depth (km)
12.0
2.0
11.0
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
4.0
1.0
3.0
Y position (km)
0.0
2.0
20correct velocity model
0.0
1.0
Depth (km)
2.0
12.0
Slice positions X 5.5 km Y 1.2 km Z 2.7 km
11.0
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
1.0
4.0
Y position (km)
0.0
3.0
2.0
estimated velocity model
0.0
1.0
Depth (km)
12.0
2.0
11.0
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
1.0
4.0
3.0
Y position (km)
0.0
2.0
21correct velocity model
0.0
1.0
Depth (km)
12.0
2.0
11.0
Slice positions X 9.0 km Y 3.3 km Z 2.2 km
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
4.0
1.0
3.0
Y position (km)
0.0
2.0
estimated velocity model
0.0
1.0
Depth (km)
12.0
2.0
11.0
10.0
9.0
3.0
8.0
4.0
7.0
3.0
6.0
X position (km)
5.0
2.0
4.0
1.0
3.0
Y position (km)
0.0
2.0
22correct velocity model
Slice positions X 8.0 km Y 2.0 km Z 1.5 km
estimated velocity model
23Y1.0 km
Offset (km)
0.0
3.2
0.0
1.0
Depth (km)
2.0
3.0
0.0
1.0
Depth (km)
2.0
3.0
24Y1.8 km
Offset (km)
0.0
3.2
0.0
1.0
Depth (km)
2.0
3.0
0.0
1.0
Depth (km)
2.0
3.0
25Y3.0 km
Offset (km)
0.0
3.2
0.0
1.0
Depth (km)
2.0
3.0
0.0
1.0
Depth (km)
2.0
3.0
26Y3.4 km
Offset (km)
0.0
3.2
0.0
1.0
Depth (km)
2.0
3.0
0.0
1.0
Depth (km)
2.0
3.0
27Offset (km)
Offset (km)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
0.4
0.8
Time (s)
1.2
1.6
2.0
Iteration 1
Iteration 5
28Offset (km)
Offset (km)
0.0
0.4
0.8
Time (s)
1.2
1.6
2.0
Iteration 10
Iteration 15
29Unit m/s
5495
4698
3901
2307
Position (km)
Position (km)
Depth (km)
Iteration 1
Iteration 3
Position (km)
Position (km)
Depth (km)
Iteration 5
Iteration 7
30Unit m/s
5495
4698
3901
2307
Position (km)
Position (km)
Depth (km)
Iteration 9
Iteration 13
Position (km)
Position (km)
Depth (km)
Iteration 15
Correct velocity
310.0
1.0
Depth (km)
2.0
12.0
11.0
10.0
3.0
9.0
4.0
8.0
7.0
3.0
6.0
2.0
X position (km)
5.0
1.0
4.0
Y position (km)
3.0
0.0
2.0
0.0
1.0
Depth (km)
12.0
2.0
11.0
10.0
3.0
9.0
4.0
8.0
7.0
3.0
6.0
2.0
X position (km)
5.0
1.0
4.0
Y position (km)
3.0
0.0
2.0
320.0
1.0
Depth (km)
2.0
12.0
11.0
10.0
3.0
9.0
8.0
4.0
7.0
3.0
6.0
X position (km)
2.0
5.0
4.0
1.0
Y position (km)
3.0
0.0
2.0
0.0
1.0
Depth (km)
2.0
12.0
11.0
10.0
3.0
9.0
4.0
8.0
7.0
3.0
6.0
X position (km)
2.0
5.0
4.0
1.0
Y position (km)
3.0
0.0
2.0
33Average time residual per ray (s)
Iteration number
34Computation time
- Using 10 AMD Opterons, one iteration needs
- about 1.8 hours for 1.28 million traces
- Could be faster if do not do I/O of rays and
- CRP gathers, but no QC will be available
35Conclusions
- Event picking is greatly reduced and needs to be
done only once - Fast convergence
- Fast computation time
- Provides accurate velocity models and hence
better migrations
36Acknowledgments
- UT Dallas Consortium sponsors
- SEG/EAGE for the velocity model