Title: Preservation of the Northern Spooky Tooky
1Preservation of the Northern Spooky Tooky
- Blue Team
- Lucas Annala-Kinne
- Dylan Esmonde
- Emma McArdle
- Rylee Sweeney
2Spooky Tooky
- Three Differing Sets of Data to determine the
Spooky Tookys Fate - Set 1 (University Biologists)
- Set 2 (Government Study)
- Set 3 (Sierra Club)
-
3Data Set 1University Biologists
- Growth Rate Equation
- ??(1 s/?) l?b
- a 3 years
- s 0.95
- so 0.15
- s1 0.72
- b 0.24
- ?3(1 - 0.95/?) (0.950.150.72)(0.24)
- ?3(1 - 0.95/?) 0.024624
4Data Set 1(University Biologists)
- Populations Crash Projections
- - ln ? / ln ?
- - ln(12000)/ln(0.97585)
- ? 384.21 Years
-
5Data Set 2 (Government Study)
- Growth Rate Equation
- ??(1 s/?) l?b
- a 4 years
- s 0.5
- so 0.10
- s1 0.50
- b 0.28
- ?4(1 - 0.85/?) (0.850.100.50)(0.28)
-
- ?4 (1 0.85/?) 0.0119
6Data Set 2(Government Study)
- Populations Crash Projections
- - ln ? / ln ?
- ? - ln(12000)/ln(0.8683)
-
- ? 66.5 Years
7Data Set 3(Seirra Club)
- Growth Rate Equation
- ??(1 s/?) l?b
- a 2 years
- s 0.65
- so 0.05
- s1 0.35
- b 0.20
- ?2(1 - 0.65/?) (0.650.050.35)(0.20)
-
- ?2 (0.65)?2/? 0.002275
8Data Set 3(Sierra Club)
- Population Crash Projection
- ? - ln ? / ln ?
-
- ? - ln(12000)/ln(0.65348)
-
- ? 22 Years
9Three Different Population Crash Projections
- Data Set 1
- (University Biologists)
- Crash after
- 384 years
- Data Set 2 (Government Study)
- Crash after
- 66 ½ years
- Data Set 3
- (Sierra Club)
- Crash after
- 22 years
10Which parameter most severely affects growth rate
(?)?
11Methodology
- First, I averaged the data sets to create a
control. - ??(1 s/?) l?b
- ? 3 years
- s .82
- so .1
- s1 .52
- b .24
- l?b.01023
- ? 0.835
- Second, I began testing values that lay below or
above the average data set. In doing so, I made
the assumption that the data sets were biased.
12age at which the species starts breeding
Changing ? - When ? is 4, ? 0.8375 When ? is 2,
? 0.8325 Change in ? 0.0050
13adult annual survival probability
- Changing s
- When s 0.95, l?b 0.0119, ? 0.962
- When s 0.65, l?b 0.008112, ? 0.668
- Change in ? 0.294
14survival probability at birth and in fledgling
stage of life
- Changing so
- Changing so to 0.05, l?b 0.00512,
- ? 0.8275
- Changing so to 0.15, l?b 0.01535,
- 0.841
- Change in ? 0.0123
15sub-adult annual survival probability
- Changing s1
- Changing s1 to 0.72, l?b 0.01417,
- ? 0.84
- Changing s1 to 0.35, l?b 0.00689,
- 0.83
- Change in ? 0.00728
16average reproductive rate of female offspring per
adult female in the overall population per year.
- Changing b
- Changing b to 0.28, l?b 0.01194,
- ? 0.837
- Changing b to 0.20, l?b 0.008528,
- ? 0.832
- Change in ? 0.005
17s, the adult annual survival probabilityaffects
? the most
- ? - Change in ? 0.005
- s1- Change in ? 0.00728
- so- Change in ? 0.0123
- s- Change in ? 0.294
- b- Change in ? 0.005
- the owls arent
dying!I
18Introducing a New Variable (W)
- New Growth Equation
- ??(1 s/?) l?b
- 1 (s/?) w-?1
- Conflicting W-values
- Republican view w 10
- Democratic view w 15
19Data Set 1(University Biologists)
- Republican Projection (w 10)
- ? 0.771
- ? 36 Years
- Democrat Projection (w 15)
- ? 0.858
- ? 61 Years
- Original Projection (w 0)
- ? 0.9759
- ? 384.21 Years
20Data Set 2(Government Study)
- Republican Projection (w 10)
- ? 0.665
- ? 23 Years
- Democrat Projection (w 15)
- ? 0.749
- ? 32 ½ Years
- Original Projection (w 0)
- ? 0.8682
- ? 66 ½ Years
21Data Set 3(Sierra Club)
- Republican Projection (w 10)
- ? 0.4281
- ? 11 Years
- Democrat Projection (w 15)
- ? 0.5062
- ? 14 Years
- Original Projection (w 0)
- ? 0.65348
- ? 22 Years
22Why is ? sensitive to W?
- ??(1 s/?) l?b ??(1 s/?) l?b
- 1 (s/?) w-?1
- ??(1 s/?) ??(1 s/?)
- 1 (s/?) w-?1
- As W increases so will ?
- W ? W ?
23 What do you mean theres an error?
Crook
Scientist
24(No Transcript)
25Mind your Ps and Hs
26Time for more strip malls
27Pick your Destiny