Title: Model Robustness versus Parameter Evolution
1Model Robustness versus Parameter Evolution
- Mark H. Goadrich
- University of Wisconsin Madison
- October 2nd, 2003
- presented at Agent 2003, Chicago, IL
2Issues in Agent-Based Modeling
Anasazi Village
Heatbugs
Sugarscape
Abstract
Realistic
Retirement Timing
Prisoners Dilemma
- More details more parameters
3Robustness versus Evolution
- How to handle parameters?
- Test each one for robustness
- Assumes all parameter values equally likely
- Tedious, grows exponentially
- Use knowledge of likely parameters
- Known a priori from data
- Learn parameter values using another model
- Explore this approach on bargaining game
4Outline
- Evolutionary Divide the Cake
- Assortative Correlations
- Schelling Segregation Model
- Social Network Model
- Conclusions
5Evolution of Justice (Skyrms 98)
Referee
Player 1 Player 2 Win / Lose
35 55 W
70 60 L
50 50 W
70 30 W
Player 2
Player 1
Cake
- 50 / 50 split seems fair, but why not 70 / 30?
- http//www.nytimes.com/2003/09/18/science/18MONK.h
tml
6Evolution of Justice
- Use Evolutionary Game Theory
- 1000 players with preset strategies
- Randomly without replacement pair players for
games - Fitness is amount of cake received
- Reproduce asexually, repeat until stable
population - Three strategies, 1/3 (modest), 1/2 (fair), and
2/3 (greedy) - Fair split evolved from 74 of initial
populations - How can we rid ourselves of polymorphisms?
7Skyrms and Correlations
- Change random to correlated pairings
- Skyrms proposes like plays with like
- Fair split evolves from 100 of populations
- But correlation is now a parameter
- DArms et. al. introduce anti-correlation
- greedy players prefer anyone but themselves
- Fair split evolves from 56 of populations!
- Model is not robust across correlations
8Assortative Correlations
M F G
M 0.8 0.1 0.1
F 0.1 0.8 0.1
G 0.1 0.1 0.8
M F G
M 0.3 0.3 0.3
F 0.4 0.4 0.1
G 0.8 0.1 0.1
M F G
M 0.3 0.3 0.3
F 0.1 0.8 0.1
G 0.4 0.4 0.1
Barrett, et. al. (90)
DArms, et. al. (56)
Skyrms (100)
- Maybe not all correlations equally likely
- Learn parameter values
- Schelling Segregation
- Dynamic Social Network Creation
9Schelling Segregation Model
- Changes to basic game
- Now nine strategies (0.1, 0.2, etc.)
- Add spatial dimension
- Players have a happiness threshold andmove when
unhappy - Assort for 20 time-steps
- We can infer preferences from the resulting
neighborhood clusters
10Schelling Assortment
After 20 rounds
Initial Locations
11Player Satisfaction
12Schelling Correlation Matrix
Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)
0.1 0.10 0.17 0.14 0.12 0.13 0.12 0.07 0.06 0.07
0.2 0.13 0.18 0.16 0.13 0.13 0.12 0.08 0.03 0.02
0.3 0.10 0.16 0.12 0.18 0.13 0.18 0.06 0.04 0.02
0.4 0.09 0.12 0.17 0.26 0.13 0.17 0.02 0.01 0.03
0.5 0.11 0.14 0.15 0.15 0.23 0.02 0.05 0.07 0.07
0.6 0.11 0.14 0.21 0.21 0.02 0.12 0.05 0.07 0.07
0.7 0.10 0.14 0.11 0.04 0.07 0.07 0.14 0.22 0.11
0.8 0.09 0.06 0.07 0.02 0.11 0.11 0.23 0.13 0.18
0.9 0.09 0.03 0.04 0.05 0.11 0.11 0.11 0.17 0.28
13Change in Fitness from Assortment
14Tolerance Threshold Variation
15Conclusions
- Shift in focus from broad applicability to
grounded models introduces complexity - When possible, concentrate on likely parameter
values instead of robustness - Concentrate debate on models grounded in
experience
16Acknowledgements
- Elliott Sober
- Brian Skyrms
- Laura Goadrich
- Matt Jadud
- NLM training grant 1T15LM007359-01
17Thank you!
- http//www.cs.wisc.edu/richm/
- richm_at_cs.wisc.edu
18Social Network Algorithm
- Let players associate during generations
- Dynamically update preferences
- for each player strategy
- choose opponent according to preferences
- if successful game, increase opponent preference
- repeat 1000 times
- Players should associate withfavorable opponents
19Network Correlation Matrix
Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)
0.1 0.08 0.17 0.02 0.12 0.06 0.21 0.14 0.13 0.07
0.2 0.12 0.00 0.07 0.07 0.15 0.24 0.08 0.27 0.00
0.3 0.06 0.03 0.02 0.44 0.41 0.03 0.01 0.01 0.00
0.4 0.55 0.07 0.11 0.07 0.13 0.04 0.00 0.01 0.01
0.5 0.19 0.16 0.18 0.25 0.21 0.00 0.00 0.01 0.01
0.6 0.39 0.03 0.41 0.15 0.00 0.00 0.01 0.00 0.01
0.7 0.01 0.84 0.13 0.00 0.01 0.01 0.00 0.00 0.00
0.8 0.58 0.40 0.00 0.00 0.00 0.00 0.00 0.01 0.00
0.9 0.94 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00
20Social Network Fairness