Model Robustness versus Parameter Evolution - PowerPoint PPT Presentation

About This Presentation
Title:

Model Robustness versus Parameter Evolution

Description:

Fitness is amount of cake received. Reproduce asexually, repeat until stable population ... Change in Fitness from Assortment. October 2nd, 2003. Agent 2003, ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 21
Provided by: ric787
Category:

less

Transcript and Presenter's Notes

Title: Model Robustness versus Parameter Evolution


1
Model Robustness versus Parameter Evolution
  • Mark H. Goadrich
  • University of Wisconsin Madison
  • October 2nd, 2003
  • presented at Agent 2003, Chicago, IL

2
Issues in Agent-Based Modeling
Anasazi Village
Heatbugs
Sugarscape
Abstract
Realistic
Retirement Timing
Prisoners Dilemma
  • More details more parameters

3
Robustness versus Evolution
  • How to handle parameters?
  • Test each one for robustness
  • Assumes all parameter values equally likely
  • Tedious, grows exponentially
  • Use knowledge of likely parameters
  • Known a priori from data
  • Learn parameter values using another model
  • Explore this approach on bargaining game

4
Outline
  • Evolutionary Divide the Cake
  • Assortative Correlations
  • Schelling Segregation Model
  • Social Network Model
  • Conclusions

5
Evolution of Justice (Skyrms 98)
Referee
Player 1 Player 2 Win / Lose
35 55 W
70 60 L
50 50 W
70 30 W
Player 2
Player 1
Cake
  • 50 / 50 split seems fair, but why not 70 / 30?
  • http//www.nytimes.com/2003/09/18/science/18MONK.h
    tml

6
Evolution of Justice
  • Use Evolutionary Game Theory
  • 1000 players with preset strategies
  • Randomly without replacement pair players for
    games
  • Fitness is amount of cake received
  • Reproduce asexually, repeat until stable
    population
  • Three strategies, 1/3 (modest), 1/2 (fair), and
    2/3 (greedy)
  • Fair split evolved from 74 of initial
    populations
  • How can we rid ourselves of polymorphisms?

7
Skyrms and Correlations
  • Change random to correlated pairings
  • Skyrms proposes like plays with like
  • Fair split evolves from 100 of populations
  • But correlation is now a parameter
  • DArms et. al. introduce anti-correlation
  • greedy players prefer anyone but themselves
  • Fair split evolves from 56 of populations!
  • Model is not robust across correlations

8
Assortative Correlations
M F G
M 0.8 0.1 0.1
F 0.1 0.8 0.1
G 0.1 0.1 0.8
M F G
M 0.3 0.3 0.3
F 0.4 0.4 0.1
G 0.8 0.1 0.1
M F G
M 0.3 0.3 0.3
F 0.1 0.8 0.1
G 0.4 0.4 0.1
Barrett, et. al. (90)
DArms, et. al. (56)
Skyrms (100)
  • Maybe not all correlations equally likely
  • Learn parameter values
  • Schelling Segregation
  • Dynamic Social Network Creation

9
Schelling Segregation Model
  • Changes to basic game
  • Now nine strategies (0.1, 0.2, etc.)
  • Add spatial dimension
  • Players have a happiness threshold andmove when
    unhappy
  • Assort for 20 time-steps
  • We can infer preferences from the resulting
    neighborhood clusters

10
Schelling Assortment
After 20 rounds
Initial Locations
11
Player Satisfaction
12
Schelling Correlation Matrix
Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)
0.1 0.10 0.17 0.14 0.12 0.13 0.12 0.07 0.06 0.07
0.2 0.13 0.18 0.16 0.13 0.13 0.12 0.08 0.03 0.02
0.3 0.10 0.16 0.12 0.18 0.13 0.18 0.06 0.04 0.02
0.4 0.09 0.12 0.17 0.26 0.13 0.17 0.02 0.01 0.03
0.5 0.11 0.14 0.15 0.15 0.23 0.02 0.05 0.07 0.07
0.6 0.11 0.14 0.21 0.21 0.02 0.12 0.05 0.07 0.07
0.7 0.10 0.14 0.11 0.04 0.07 0.07 0.14 0.22 0.11
0.8 0.09 0.06 0.07 0.02 0.11 0.11 0.23 0.13 0.18
0.9 0.09 0.03 0.04 0.05 0.11 0.11 0.11 0.17 0.28
13
Change in Fitness from Assortment
14
Tolerance Threshold Variation
15
Conclusions
  • Shift in focus from broad applicability to
    grounded models introduces complexity
  • When possible, concentrate on likely parameter
    values instead of robustness
  • Concentrate debate on models grounded in
    experience

16
Acknowledgements
  • Elliott Sober
  • Brian Skyrms
  • Laura Goadrich
  • Matt Jadud
  • NLM training grant 1T15LM007359-01

17
Thank you!
  • http//www.cs.wisc.edu/richm/
  • richm_at_cs.wisc.edu

18
Social Network Algorithm
  • Let players associate during generations
  • Dynamically update preferences
  • for each player strategy
  • choose opponent according to preferences
  • if successful game, increase opponent preference
  • repeat 1000 times
  • Players should associate withfavorable opponents

19
Network Correlation Matrix
Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)
0.1 0.08 0.17 0.02 0.12 0.06 0.21 0.14 0.13 0.07
0.2 0.12 0.00 0.07 0.07 0.15 0.24 0.08 0.27 0.00
0.3 0.06 0.03 0.02 0.44 0.41 0.03 0.01 0.01 0.00
0.4 0.55 0.07 0.11 0.07 0.13 0.04 0.00 0.01 0.01
0.5 0.19 0.16 0.18 0.25 0.21 0.00 0.00 0.01 0.01
0.6 0.39 0.03 0.41 0.15 0.00 0.00 0.01 0.00 0.01
0.7 0.01 0.84 0.13 0.00 0.01 0.01 0.00 0.00 0.00
0.8 0.58 0.40 0.00 0.00 0.00 0.00 0.00 0.01 0.00
0.9 0.94 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00
20
Social Network Fairness
Write a Comment
User Comments (0)
About PowerShow.com