Title: Diapositiva 1
1Clase 3 Heurísticas Ascenso de Colina y
Recocido Simulado
Gabriela Ochoa http//www.ldc.usb.ve/gabro/
2Fitness Landscape (Paisaje Adaptativo)
- Can envisage population with n traits as
existing in a n1-dimensional space (landscape)
with height corresponding to fitness - Each different individual (phenotype) represents
a single point on the landscape - Population is therefore a cloud of points,
moving on the landscape over time as it evolves
- adaptation
3Fitness Landscape (2 traits)
4Métodos de Ascenso de Colina - 1
- Usan una técnica de mejoramiento iterativo
- Comienzan a partir de un punto (punto actual) en
el espacio de búsqueda - En cada iteración, un nuevo punto es seleccionado
de la vecindad del punto actual - Si el nuevo punto es mejor, se transforma en em
punto actual, sino otro punto vecino es
seleccionado y evaluado - El método termina cuando no hay mejorías, o
cuando se alcanza un numero predefinido de
iteraciones
5Hillclimbing Methods - 2
- May converge to local optima
- usually have to start search from various
starting points - Initial starting points may be chosen,
- randomly
- according to some regular pattern
- based on other information (e.g. results of a
prior search)
6Hillclimbing Methods - 3
- Variations of hillclimbing algorithms differ in
the way a new string is selected for comparisons
with the current string - One version of simple (iterated) hillclimbing
method is the steepest ascent hillclimbing
7Hillclimbing Methods - 4
- Example problem
- The search space is a set of binary strings v of
length 30 - The objective function f (to be maximized)
- f(v)11one(v)-150
- where one(v) returns the number of ones in v.
- e.g. v1(110111101111011101101111010101)
- f(v1) 1122 - 150 92
8Hillclimbing Methods - 5
- procedure iterated hillclimber
- begin
- t ? 0
- repeat
- local ? FALSE
- select a curent string vc at random
- evaluate vc
- repeat
- form 30 new strings in the neigborhood of
vc by - flipping single bits of vc
- select vn from the set of new strings with
the - largest value of the objective function f
- if f(vc) lt f(vn) then vc ? vn
- else local ? TRUE
- until local
- t ? t1
- until tMAX
- end
9Hillclimbing Methods - 6
- success/failure of each iteration depends on
starting point - success defined as returning a local or a global
optimum - in problems with many local optima a global
optimum may not be found
10Hillclimbing Methods - 7
- Weaknesses
- Usually terminate at solutions that are local
optima - No information as to how much the discovered
local optimum deviates from the global (or even
other local optima) - Obtained optimum depends on starting point
- Usually no upper bound on computation time
11Hillclimbing Methods - 8
- Advantages
- Very easy to apply (only a representation, the
evaluation function and a measure that defines
the neigborhood around a point is needed)
12Search Techniques Revisited - 1
- Effective search techniques provide a mechanism
to balance exploration and exploitation - exploiting the best solutions found so far
- exploring the search space
13Search Techniques Revisited - 2
- Hillclimbing methods exploit the best available
solution for possible improvement but neglect
exploring a large portion of the search space - Random search (points in the search space are
sampled with equal probability) explores the
search space thoroughly but misses exploiting
promising regions.
14Search Techniques Revisited - 3
- Aim is to design search algorithms that can
- escape local optima
- balance exploration and exploitation
- make the search independent from the initial
configuration
15Simulated Annealing - 1
- derived from statistical mechanics
- based on analogy between annealing of solids and
the solving of combinatorial optimization problems
16Simulated Annealing - 2
- annealing the physical process of heating up a
solid and then cooling it down until it
crystallizes - at higher temperatures atoms have higher energies
and more freedom to arrange themselves - as temperature is decreased atomic energies
decrease
17Simulated Annealing - 3
- a crystal with regular structure is obtained at
minimum energy state - rapid quenching very rapid cooling which causes
widespread irregularities in the crystal
structure and system does not reach minimum
energy state
18Simulated Annealing - 4
- the states of the solid represent feasible
solutions of the optimization problem - the energies of the states correspond to values
of the objective function calculated at those
states - minimum energy state corresponds to optimal
solution - rapid quenching corresponds to converging to
local optima
19Simulated Annealing - 5
- Four principle choices to make
- representation of solutions
- definition of cost function
- definition of generation function for neighbors
(can be random) - designing a cooling schedule four parameters
must be specified - initial temperature, temperature update rule,
number of iterations to be performed at each
temperature, stopping criteria
20Simulated Annealing - 6
- procedure simulated annealing
- begin
- create an initial solution
- repeat
- evaluate solution
- if accepted then update current solution
- if time to change temperature then
- decrease temperature
- if stopping-criteria NOT satisfied then
- generate new solution
- until stopping-criteria satisfied
- end
21Problema Optimización Numérica
- Función
- Vencindad
- x (x1, , xn), li xi ui
- x xi N(0,si), si (ui - li)/6
- Hillclimbing iterado, generar vecindad de tamaño
fijo - Simulated Annealing, dos tipos de puntos vecinos.
22Simulated Annealing in Matlab
for i1TRIES, nAccep 0 for
j1NOVER, solNew NewSolution(solCurr,bo
unds,i,TRIES) Generate new solution
solNew(1,) solNew(1,totLen)
EvalSol(solNew,evalOps) Evaluate new Solution
deltaE solCurr(1,totLen) -
solNew(1,totLen) if (deltaE gt 0)
(rand lt exp(deltaE/T)) solCurr
solNew Accept Solution
nAccep nAccep 1
end if (solCurr(1,totLen) lt
solBest(1,totLen)) Minimization Problem
solBest solCurr bestTrace
bestTrace solBest(1,totLen) end
currTrace currTrace solCurr(1,totLen)
end T T TFACTR
Annealing Schedule cbTrace cbTrace
solBest(1,totLen) Current best trace end
23Parámetros y variables del SA
- solCurr zeros(1,totLen) Allocate the
current solution - solNew zeros(1,totLen) Allocate the new
solution - solBest zeros(1,totLen) Allocate the best
solution - TFACTR 0.85 Ann Sched
Reduce T by this factor on each step - TRIES 100 Number of
Temperature Steps to try - TMAX 10 Maximun
Initial Temperature - T TMAX Current
Temperature - NOVER 30 Max. No. of
solutions tried at any temp - NLIMIT 10 Max. No. of
successful solutions before continuing - nAccep 0 Counter for
the number of accepted solutions - deltaE 0 Maintains
difference in performance between current and new
solution - bestFitness 0 Maintais
best-so-far fitness
24EAs and Other Search Heuristics
- avoid converging to local optima
- use exploration of the search space and
exploitation of promising areas - not dependent on initial starting point(s)
- start search from many points in the search space
space
25EAs and Other Search Heuristics
- conduct search in parallel over the search space
- implicit parallelism
- through recombination operators, reach better
solutions by combining already found good
solutions (building block hypothesis and the
schema theorem) - may be used together with other approaches
(hybrids)