Title: A Quantitative Hierarchical Model for DSMV
1A Quantitative Hierarchical Model for DSM-V
- David Watson
- University of Iowa
- October 29, 2005
2The Basic DSM Structure
- Symptoms organized into disorders
- Disorders organized into diagnostic classes
- Thus, DSM organization implies an underlying
structure - Related symptoms define disorders
- Related disorders define classes
3DSM-IV A Rational Taxonomy
- Diagnostic classes rationally based on shared
phenomenological features - Mood disorders disturbance of mood as the
predominant feature - Anxiety disorders symptoms of anxiety and
avoidance behavior
4DSM-IV Mood Disorders
5DSM-IV Mood Disorders
6DSM-IV Anxiety Disorders
7DSM-IV Anxiety Disorders
8Basic Structural Problems with Current DSM Scheme
- DSM-IV taxonomy fails to model strong mood and
anxiety disorder comorbidity - Current depressed-anxious mood distinction does
not represent optimal subdivision of these
disorders
9Correlations between PANAS-X Fear Sadness Scales
- _____________________________________
- Rating Type Overall N Mean r
- _____________________________________
- Self-Ratings 8,685 .58
- Other-Ratings 978 .54
- _____________________________________
10Correlations between MASQ GD Depression
Anxiety Scales
- _____________________________________
- Sample Type Overall N Mean
r - _____________________________________
- Non-distressed 4,272 .68
- Distressed 1,589 .74
- _____________________________________
11Correlations between IDAS Depressed Anxious
Mood Scales
- __________________________________________
- Sample N
r - __________________________________________
- High School Students 247 .78
- College Students 673 .76
- Community Adults 362 .78
- Psychiatric Patients 353 .77
- __________________________________________
12Tetrachoric Correlations between Major
Depression GAD
- __________________________________________
- Sample N
r - __________________________________________
- NCS (U.S.) 8,098 .59
- NEMESIS (Wave 1) 7,076 .68
- NEMESIS (Wave 2) 5,618 .70
- Australian NSMHWB 10,641 .66
- __________________________________________
13Tetrachoric Correlations between Dysthymia GAD
- __________________________________________
- Sample N
r - __________________________________________
- NCS (U.S.) 8,098 .64
- NEMESIS (Wave 1) 7,076 .67
- NEMESIS (Wave 2) 5,618 .70
- Australian NSMHWB 10,641 .69
- __________________________________________
14Rethinking the DSM
- Problems indicate need for alternative approach
- Quantitative structural analyses --gt
- better, more accurate taxonomy
- Current rational system reflects hypothesized
similarities - Replace with quantitative scheme which captures
actual similarities between disorders
15Factor Loadings from CFA of NCS Data
- _________________________________________________
- Disorder Distress
Fear - _________________________________________________
- Major Depression .62
- Dysthymia .53
- GAD .47
- PTSD .40
- Simple Phobia .54
- Agoraphobia .51
- Social Phobia .49
- Panic Disorder .41
- _________________________________________________
16Factor Loadings from CFA of NEMESIS Data (Wave 1)
- _________________________________________________
- Disorder Distress
Fear - _________________________________________________
- Dysthymia .93
- GAD .84
- Major Depression .83
- Panic Disorder .94
- Social Phobia .86
- Agoraphobia .81
- Simple Phobia .75
- _________________________________________________
- Adapted from Vollebergh et al. (2001)
17Factor Loadings from CFA of Australian NSMHWB
- _________________________________________________
- Disorder Distress
Fear - _________________________________________________
- GAD .85
- PTSD .83
- Dysthymic Disorder .82
- Major Depression .81
- Panic Disorder .83
- Agoraphobia .83
- Social Phobia .82
- OCD .73
- _________________________________________________
- Adapted from Slade Watson (2005).
18Toward an EtiologicallyBased System
- Phenotypic and genotypic structures parallel one
another - Kendler et al. (AGP, 2003) concluded
- the structure of these genetic risk factors
bears a conspicuous resemblance to the phenotypic
structure (p. 935) - Thus, phenotypic structural analyses point toward
etiologically based classification system
19Revised Structural Model of Mood Anxiety
Disorders
20Revised Structural Model of Mood Anxiety
Disorders
21Revised Structural Model Basic Features
- Distress Disorders subgroup characterized by
- pervasive subjective distress
- Fear Disorders subgroup characterized by
- behavioral avoidance
- more limited distress
22Placement of OCD (I) Factor Correlations from a
CFA
- _______________________________________
- Factor 1 2
3 - _______________________________________
- 1 OCD .--
- 2 Dissociation .56 .--
- 3 Schizotypy .58 .90 .--
- _______________________________________
- N 455.
23Placement of OCD (II)Factor Correlations from a
CFA
- __________________________________________
- Factor 1 2
3 4 5 - __________________________________________
- OCD .--
- Dissociation .76 .--
- Mistrust .69 .66 .--
- Oddity .54 .84 .54 .--
- Social Anhedonia .33 .45 .64 .42 .--
- __________________________________________
- N 1,286.
24Placement of OCD (III) Factor Correlations from
a CFA
- __________________________________________
- Factor 1 2
3 4 5 - __________________________________________
- OCD .--
- Social Phobia .46 .--
- BII Phobia .42 .56 .--
- Depression .48 .41 .27 .--
- Dissociation .60 .23 .14 .46 .--
- __________________________________________
- N 359.
25OCD Conclusions
- Strongly related to dissociation and schizotypal
PD symptoms - Correlates more strongly with dissociation/schizot
ypy than other anxiety disorders - May define separate higher order factor in more
comprehensive structural model
26A Three Superclass Taxonomy
27A Three Superclass Taxonomy
28Advantages of a Fully Quantitative Hierarchical
Model
- Directly models patterns of comorbidity
- Solves heterogeneity problem
- Captures information related to severity of
dysfunction - Balances parsimony and precision
29Thanks to
- NIMH Grant 1-R01-MH068472-1
- Gavin Andrews, Michael Chmielewski, Ron de Graaf,
Wakiza Gamez, Roman Kotov, Elizabeth
McDade-Montez, Michael OHara, Jennifer Gringer
Richards, Leonard Simms, Tim Slade Wilma
Vollebergh