Title: RadiationDominated Accretion Disks
1Radiation-Dominated Accretion Disks
- Omer Blaes Shane Davis
- U.C. Santa Barbara
Jim Stone Princeton Julian Krolik JHU
Takayoshi Sano Osaka
Ari Socrates Princeton Mitch Begelman JILA
David Ballantyne CITA Andy Young MIT
Neal Turner Jet Propulsion Laboratory
2(No Transcript)
3To Make Accreting Gas Shine
- Remove angular momentum
- Dissipate orbital kinetic energy
- Radiate photons
4Circinus X-1, artists impression
5Shakura-Sunyaev Picture Assumptions
- Hydrostatic equilibrium
- Stress aP
- Vertical thermal balance viscous
heating diffusion cooling dissipation
density - Inflow equilibrium
6Innermost 300 RSchw
7- Innermost 300 RSchw
- Radiation Pressure gt Gas Pressure
8- Innermost 300 RSchw
- Radiation Pressure gt Gas Pressure
- Flat, thickness 2RSchw
9- Innermost 300 RSchw
- Radiation Pressure gt Gas Pressure
- Flat, thickness 2RSchw
- Uniform Density and Dissipation
10Instabilities of Shakura-Sunyaev model
- Convective
- Thermal
- Viscous
11Overview
- Shakura-Sunyaev Picture
- Radiation-MHD Equations
- Heating
- Cooling
- X-Ray Reflection
- Summary
12Equations of Radiation MHD
133. Heating
14Balbus Hawley 1991
15To Black Hole
10
100 RS
Density Fluctuations r / ltrgt
1
1/10
16Flow is heated by
- Microscopic viscosity
- Magnetic dissipation
- Radiation damping
17Diffusion length
18Diffusion length
MRI wavelength
19Agol Krolik 1998
Radiation Damping
1. Magnetic fields squeeze gas
20Agol Krolik 1998
Radiation Damping
2. Gas radiates
21Magnetic Field Evolution
Height z / RS
Horizontally-averaged magnetic pressure
6
0
-6
0
100
Time / orbits
22Gas and Radiation Pressures
Radiation
Magnetic
Accretion Stress
Gas
23Stability Against Convection
Radiation
Gas
24Compare Shakura-Sunyaev Model
Same surface mass density and flux
RMHD Calculation
a-model
254. Cooling
26Radiation escapes by
- Vertical Diffusion
- Convection
- Photon Bubble Instability
Arons 1992 Gammie 1998
27Gravity
Strong Magnetic Field
Radiation Flux
28Gravity
Strong Magnetic Field
Extra Flux
Radiation Flux
29Gravity
Strong Magnetic Field
Time 1
Radiation Flux
30Gravity
Strong Magnetic Field
Time 2
Radiation Flux
31Gravity
Strong Magnetic Field
Radiation Flux
32Lengths and Speeds
Radiation sound speed
Isothermal gas sound speed
Radiation scale height
Gas scale height
33Blaes Socrates 2003
Domain Top
Center
2562
1282
Bottom
642
322
34Analytic Prediction
kz
kx
Growth Rate / W
-2.7
2.1
-0.3
35Numerical Results, 1282 Zones
kz
kx
Growth Rate / W
-2.7
2.1
-0.3
361.6W
1.8
2.0
2.2
642
37Growth on Inclined Fields
180
5.0
qB
2.5
90
0.0
0
0
90
180
qk
38Begelman 2001
39(No Transcript)
40(No Transcript)
41Vertical Diffusion
Photon Bubbles
Convection
z
x
-8.2
log10 r g cm-3
-10.1
-12.0
Arrows B 6200 Gauss
42Vertical Diffusion
Convection
Photon Bubbles
43Photon Bubbles with MRI
z
R
-9.0
log10 r g cm-3
-10.0
-11.0
Arrows B 1500 Gauss
44Photon Bubbles with MRI
z
R
log10 r g cm-3
45Photon Bubbles with MRI
z
R
-7.2
log10 r g cm-3
-9.1
-11.0
465. X-Ray Reflection
47Effects on X-Ray Reflection Spectrum
Ballantyne et al. 2004
Synthetic Spectrum
Best-Fit Uniform Slab Model
Residuals
48Effects on X-Ray Reflection Variability
Ballantyne et al. 2005
49Assumptions tested
- Hydrostatic equilibrium
- Stress aP
- Vertical thermal balance viscous
heating diffusion cooling dissipation
density - Inflow equilibrium
?
?
50Summary
- Radiation-dominated disks are heated by magnetic
dissipation and photon damping. - Heating in low-density surface layers leads to
convective stability and quick thermal evolution. - Short-wavelength photon bubbles grow faster than
W if magnetic pressure gt gas pressure. - The bubbles become propagating shocks, and
radiation escapes through the gaps between.
51Energy Flow
PHOTON BUBBLES