Divide - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Divide

Description:

iterative code, loop invariants, and sums. recursion, ... ln(x) = loge(x) lg(x) = log2(x) [frequently occurs in CS] Properties. log(cd) = log(c) log(d) ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 26
Provided by: JeremyR91
Category:
Tags: divide | loge

less

Transcript and Presenter's Notes

Title: Divide


1
Divide Conquer
  • Themes
  • Reasoning about code (correctness and cost)
  • iterative code, loop invariants, and sums
  • recursion, induction, and recurrence relations
  • Divide and Conquer
  • Examples
  • sorting (insertion sort merge sort)
  • computing powers
  • Euclidean algorithm (computing gcds)

2
Identities for Sums
3
Some Common Sums
4
Arithmetic Series
  • Sum of consecutive integers (written slightly
    differently)

See http//www.cs.drexel.edu/kschmidt/CS520/Lectu
res/2/arithmetic.swf
5
Arithmetic Series (Proof)

6
Geometric Series
  • 1 x x2 xn-1

See http//www.cs.drexel.edu/kschmidt/CS520/Lectu
res/2/geometric.swf
7
Geometric Series (Proof)

8
Floor and Ceiling
  • Let x be a real number
  • The floor of x, ?x?, is the largest integer less
    than or equal to x
  • If an integer k satisfies k ? x lt k1, k ?x?
  • E.G. ?3.7? 3, ?3? 3
  • The ceiling of x, ?x?, is the smallest integer
    greater than or equal to x
  • If an integer k satisfies k-1 lt x ? k, k ?x?
  • E.G. ?3.7? 4, ?3? 3

9
logarithm
  • y logb(x) ? by x
  • Two important cases
  • ln(x) loge(x)
  • lg(x) log2(x) frequently occurs in CS
  • Properties
  • log(cd) log(c) log(d)
  • log(cx) xlog(c)
  • logb(bx) x blogb(x)
  • d ln(x)/dx 1/x

10
logarithm
  • 2k ?? x lt 2k1 ? k ?lg(x)?
  • E.G. 16 ? 25 lt 32 ? 4 ? lg(25) lt 5
  • lg(25) ? 4.64
  • Change of base
  • logc(x) logb(x) / logb(c)
  • Proof. y logc(x) ? cy x ? ylogb(c) logb(x)
    ? y logb(x) / logb(c)

11
Insertion Sort
  • To sort x0,,xn-1,
  • recursively sort x0,,xn-2
  • insert xn-1 into x0,,xn-2
  • (see code for details)
  • Loop invariant (just before test, iltn)
  • x0,, xi-1 sorted
  • initialize t xi

12
Insertion Sort (Example)
  • (7,6,5,4,3,2,1,0)
  • after recursive call (1,2,3,4,5,6,7,0)
  • Insert 0 into sorted subarray
  • Let 0 fall as far as it can
  • Number of comparisons to sort inputs that are in
    reverse sorted order (worst case)
  • C(n) C(n-1) (n-1)
  • C(1) 0

See (http//www.cs.drexel.edu/kschmidt/CS520/Prog
rams/sorts.cc)
13
Merge Sort
  • To sort x0,,xn-1,
  • recursively sort x0,,xa-1 and xa,,xn-1, where a
    n/2
  • merge two sorted lists
  • Insertion sort is a special case where a1
  • loop invariant for merge similar to insert
    (depends on implementation)

14
Merge Sort (Example)
  • (7,6,5,4,3,2,1,0)
  • after recursive calls (4,5,6,7) and (0,1,2,3)
  • Number of comparisons needed to sort, worst case
    (the merged lists are perfectly interleaved)
  • M(n) 2M(n/2) (2n-2)
  • M(1) 0
  • What is the best case (all in one list gt other
    list)?
  • M(n) 2M(n/2) n/2

15
Comparison of Insertion and Merge Sort
  • Count the number of comparisons for different
    n2k (see and run sort.cpp)
  • M(n)/C(n) ?0 as n increases
  • C(n) is of higher order. I.e., C(n) bounds M(n)
    from above, but not tightly
  • C(2n)/C(n) ? 4
  • So, apparently quadratic.
  • C(n) T(n2)
  • M(2n)/M(n) ? 2 as n increases

16
Solve Recurrence for C(n)
See (http//www.cs.drexel.edu/kschmidt/CS520/Lect
ures/2/insertionSortSwaps.swf)
17
Solve Recurrence for M(n)
See http//www.cs.drexel.edu/kschmidt/CS520/Lectu
res/2/mergeSortSwaps.swf
18
Computing Powers
  • Recursive definition, multiplying as we learned
    in 4th grade (whatever)
  • an a ? an-1, n gt 0
  • a0 1
  • Number of multiplications
  • M(n) M(n-1) 1, M(0) 0
  • M(n) n

19
Binary Powering (Recursive)
  • Binary powering
  • (see http//www.cs.drexel.edu/kschmidt/CS520/Prog
    rams/power.cpp)
  • x16 (((x2)2)2)2, 16 (10000)2
  • x23 (((x2)2x)2x)2x, 23 (10111)2
  • Recursive (right-left)
  • xn (x?n/2?)2 ? x(n 2)
  • M(n) M(?n/2?) n 2

20
Binary Powering (Iterative)
(See http//www.cs.drexel.edu/kschmidt/CS520/Prog
rams/power.cpp)
  • Example
  • N y z
  • 1 x
  • 11 x x2
  • 5 x3 x4
  • 2 x7 x8
  • 1 x7 x16
  • 0 x23 x32
  • Loop invariant
  • xn y ? zN
  • N n y 1 z x
  • while (N ! 0)
  • if (N 2 1)
  • y zy
  • z zz N N/2

21
Binary Powering
  • Number of multiplications
  • Let ?(n) number of 1bits in binary
    representation of n
  • num bits ?lg(n)? 1
  • M(n) ?lg(n)? ?(n)
  • ?(n) lg(n) gt
  • M(n) 2lg(n)

22
Greatest Common Divisors
  • g gcd(a,b) ? ga and gb
  • if ea and eb ? eg
  • gcd(a,0) a
  • gcd(a,b) gcd(b,ab)
  • since if ga and gb then gab and if gb and
    gab then ga

23
Euclidean Algorithm (Iterative)
  • (see http//www.cs.drexel.edu/kschmidt/CS520/Prog
    rams/gcd.cpp)
  • a0 a, a1 b
  • ai qi ai1 ai2 , 0 ? ai2 lt ai1
  • an qn an1
  • g an1

24
Number of Divisions
  • ai qi ai1 ai2 , 0 ? ai2 lt ai1 gt
  • ai ? qi ai2 ai2 (qi 1)ai2 ? 2ai2
  • gt an ? 2an2 gt an / an2 ? 2
  • a1 / a3 ? a2 / a4 ? ? an-1 / an1 ? an / an2 ?
    2n
  • n ? lg(a1a2 /g2)
  • if a,b ? N, n ? 2lg(N)

25
(blank, for notes)
Write a Comment
User Comments (0)
About PowerShow.com