Title: A systematic way to develop the 4x4 matrix Tq'
1Lecture 11
2(No Transcript)
3(No Transcript)
4(No Transcript)
5By substituting back
6(No Transcript)
7This product is the matrix required for problem 2
of HW4.
8This matrix represents the robots forward
kinematics
9(No Transcript)
10Inverse of a homogeneous transformation matrix
11Inverse of a homogeneous transformation matrix
12Inverse of a homogeneous transformation matrix
13Inverse
14Inverse
15Take transpose of rotation matrix.
16Reverse displacement vector.
17Reverse displacement vector.
18Reverse displacement vector.
19Reverse displacement vector.
20Refer reversed displacement vector to B frame
21Refer reversed displacement vector to B frame
22Refer reversed displacement vector to B frame
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Z-Y-X Euler Angles
30Z-Y-X Euler Angles
- - Just three numbers are needed to specify the
orientation of one set of axes relative to
another.
31Z-Y-X Euler Angles
- Just three numbers are needed to specify the
orientation of one set of axes relative to
another. - One possible set of these numbers is the Z-Y-X
Euler angles
32Consider the A and B frames shown below.
33How can we define just three quantities from
which we can express all nine elements of the
rotation matrix that defines the relative
orientations of these frames?
34Beginning with the A frame, rotate a positive a
about the ZA axis.
35Call this new frame B
36Note the rotation matrix between A and B
37Note the rotation matrix between A and B
38Note the rotation matrix between A and B
39Note the rotation matrix between A and B
40Note the rotation matrix between A and B
41Next consider just the intermediate B frame.
42Consider a positive rotation b about the YB axis.
43 take the last rotation g to be about the XB
axis.
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51Is there a systematic way to build ?
52Member i-1
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70Denevit Hartenberg parameters
71Denevit Hartenberg parameters
72Denevit Hartenberg parameters
73Three constants
74 and one variable.
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)
96D-H Example
97D-H Example
98D-H Example Puma 560
99D-H Example Puma 560
100D-H Example Puma 560
101First three rotations of Puma
102First three rotations of Puma
103i-11
104i-11
105The first rotation q1 occurs about the Z1 axis.
106The second rotation q2 occurs about the Z2 axis.
107However, the Z2 axis and the Z1 axis intersect
one another.
108(No Transcript)
109Therefore the X1 axis may be oriented arbitrarily.
110Therefore the X1 axis may be oriented arbitrarily.
111(No Transcript)
112Since the two frames share their origin, a1d20
113Since the two frames share their origin, a1d20
114But what about a1?
115But what about a1?
116But what about a1?