Title: EENG 851: Advanced Signal Processing
1EENG 851 Advanced Signal Processing
- Chapter 3
- Properties of the Quadratic
- Performance Surface
- Examples
2Properties of the Quadratic Performance Surface
3Properties of the Quadratic Performance Surface
4Normal Form of the Input Correlation Matrix
5Normal Form of the Input Correlation Matrix(Cont)
6Eigenvalues and Eigenvectors of the Input
Correlation Matrix
7Example with Two Weights
Matlab xroots(1 -.5 -.1875) x
0.7500 -0.2500
8Example with Two Weights (Cont)
9Example with Two Weights (Cont)
10Example with Two Weights (Cont)
MATLAB Direct Execution from the Command Window.
R.5 .25.25 .5 R 0.5000 0.2500
0.2500 0.5000 Q,Leig(R) Q 0.7071
0.7071 -0.7071 0.7071 L 0.2500
0 0 0.7500
11Geometrical Significance of Eigenvectors and
Eigenvalues
12Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
13Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
14Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
15Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
16Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
17Geometrical Significance of Eigenvectors and
Eigenvalues(Cont)
The eigenvectors of the input correlation matrix
define the principal axes of the error surface.
18Geometrical Significance of Eigenvectors and
Eigenvalues(Cont)
19Geometrical Significance of Eigenvectors and
Eigenvalues(Cont)
The eigenvalues of the input correlation matrix,
R, give the second derivatives of the error
surface with respect to the principal axes of
.
20Geometrical Significance of Eigenvectors and
Eigenvalues(Cont)
21Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
22Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
adsp Principal axes 8/4/99 Figure
3.1 clear N5 R.5 .5cos(2pi/N).5cos(2pi/N
) .5 P0 -sin(2pi/N)' Edk22 v.01 1 2 3
4 5 6 w0-5.055 w1-7.5.052.5 w0star2/tan
(2pi/N) w1star-2/sin(2pi/N) W0,W1meshgrid(
w0,w1) c.5W0.2.5W1.2cos(2pi/N)W0.W12s
in(2pi/N)W12Figure 3.1
23Geometrical Significance of Eigenvectors and
Eigenvalues (Cont)
adsp Principal axes 8/4/99 Figure 3.1
Continued figure(1)clf contour(w0,w1,c,v) clabe
l(c) axis('square') grid title('Mean-Square-Error
') ylabel('w1') xlabel('w0') hold on plot(-5
5,w1star w1star,'k') plot(w0star
w0star,-7.5 2.5,'k') plot(w0star,w1star,'rx
') plot(-3 4,3w1starw0star
-4w1starw0star,'r') plot(-3
4,-3w1star-w0star 4w1star-w0star,'r') hold
off
24A Second Example
25A Second Example (Cont)
26A Second Example (Cont)
MATLAB Solution
R2 11 2 R 2 1 1 2
P7 8' P 7 8 WstarR\P Wstar
2.0000 3.0000 Cmin42Wstar'RWstar-2P'
Wstar Cmin 4
27A Second Example (Cont)
28A Second Example (Cont)
29Two Parameter Principal Axes
30Two Parameter Principal Axes (Cont)
31Two Parameter Principal Axes (Cont)
32Exercise (To be handed in)
33Properties of the Quadratic Performance Surface
34Properties of the Quadratic Performance Surface
35Properties of the Quadratic Performance Surface
eig(3 22 3) ans 1 5
MATLAB
36Properties of the Quadratic Performance Surface
gtgt eig(3 11 3) ans 2 4
MATLAB
37Properties of the Quadratic Performance Surface
38Properties of the Quadratic Performance Surface
39Properties of the Quadratic Performance Surface
40Properties of the Quadratic Performance Surface
41Properties of the Quadratic Performance Surface
42Properties of the Quadratic Performance Surface
43Properties of the Quadratic Performance Surface
44Properties of the Quadratic Performance Surface
roots(1 -5 5) ans 3.6180 1.3820
format long roots(1 -5 5) ans
3.61803398874990 1.38196601125011
eig(2 11 3) ans 1.38196601125011
3.61803398874990
45Properties of the Quadratic Performance Surface
eig(4 3 03 6 20 2 4) ans
1.25834261322606 4.00000000000000
8.74165738677394
46Properties of the Quadratic Performance Surface
47Properties of the Quadratic Performance Surface
V,Deig(2 11 3) V 0.85065080835204
0.52573111211913 -0.52573111211913
0.85065080835204 D 1.38196601125011
0 0
3.61803398874990
48Properties of the Quadratic Performance Surface
V,Deig(4 3 03 6 20 2 4) V
0.66231967581349 -0.55470019622523
0.50362718288235 -0.60528454386659
0.00000000000000 0.79600918396474
0.44154645054233 0.83205029433784
0.33575145525490 D 1.25834261322606
0 0
0 4.00000000000000 0
0 0 8.74165738677394
49Properties of the Quadratic Performance Surface
50Properties of the Quadratic Performance Surface
V,Deig(4 3 03 6 20 2 4) V
0.66231967581349 -0.55470019622523
0.50362718288235 -0.60528454386659
0.00000000000000 0.79600918396474
0.44154645054233 0.83205029433784
0.33575145525490 D 1.25834261322606
0 0
0 4.00000000000000
0 0
0
8.74165738677394 V'V ans
1.00000000000000 0.00000000000000
0 0.00000000000000 1.00000000000000
0.00000000000000 0
0.00000000000000 1.00000000000000