A Community Terrain-following Ocean Modeling System - PowerPoint PPT Presentation

About This Presentation
Title:

A Community Terrain-following Ocean Modeling System

Description:

High-order advection schemes ... Advection Schemes in ROMS (Seamount Case) V ... Evaluation of time-stepping, advection, and pressure gradient algorithms ... – PowerPoint PPT presentation

Number of Views:205
Avg rating:3.0/5.0
Slides: 35
Provided by: HernanG7
Category:

less

Transcript and Presenter's Notes

Title: A Community Terrain-following Ocean Modeling System


1
A Community Terrain-following
Ocean Modeling System
Hernan G. Arango, Rutgers University
(arango_at_imcs.rutgers.edu)
Tal Ezer, Pricenton University
(ezer_at_splash.princeton.edu)
FTP
File TOMS.tar
2
COLLABORATORS
  • Bennett et al. (FNMOC OSU)
  • Chassignet / Iskandarani et al. (RSMAS)
  • Cornuelle / Miller (SIO)
  • Geyer (WHOI)
  • Hetland (TAMU)
  • Lermusiaux (Harvard)
  • Mellor (Pricenton)
  • Moore (U. Colorado)
  • Shchepetkin (UCLA)
  • Signell (SACLANT USGS)

3
OTHER COLLABORATORS
  • Chao / Song (JPL)
  • Preller / Martin (NRL)
  • Naval Operational Community
  • POM Ocean Modeling Community
  • ROMS / SCRUM Ocean Modeling Community

4
OBJECTIVES
  • To design, develop and test an expert ocean
    modeling system for scientific and operational
    applications
  • To support advanced data assimilation strategies
  • To provide a platform for coupling with
    operational atmospheric models (like COAMPS)
  • To support massive parallel computations
  • To provide a common set of options for all
    coastal developers with a goal of defining an
    optimum coastal/relocatable model for the navy

5
APPROACH
  • Use state-of-the-art advances in numerical
    techniques, subgrid-scale parameterizations,
    data assimilation, nesting, computational
    performance and parallelization
  • Modular design with ROMS as a prototype
  • Test and evaluate the computational kernel and
    various algorithms and parameterizations
  • Build a suite of test cases and application
    databases
  • Provide a web-based support to the user community
    and a linkage to primary developers

6
CHALLENGE
The complexity of physics, numerics, data
assimilation, and hardware technology should be
transparent to the expert and non-expert USER
7
TOMS KERNEL ATTRIBUTES
  • Free-surface, hydrostatic, primitive equation
    model
  • Generalized, terrain-following vertical
    coordinates
  • Boundary-fitted, orthogonal curvilinear,
    horizontal coordinates on an Arakawa C-grid
  • Non-homogeneous time-stepping algorithm
  • Accurate discretization of the baroclinic
    pressure gradient term
  • High-order advection schemes
  • Continuous, monotonic reconstruction of vertical
    gradients to maintain high-order accuracy

8
Dispersive Properties of Advection
5/2
Parabolic Splines
2
10
Vs Finite Centered Differences
6
3/2
8
K(k) ?x
4
1
2
1/2
?/4
3?/4
?/2
k?x
9
TOMS SUBGRID-SCALE PARAMETERIZATION
  • Horizontal mixing of tracers along level,
    geopotential, isopycnic surfaces
  • Transverse, isotropic stress tensor for momentum
  • Local, Mellor-Yamada, level 2.5, closure scheme
  • Non-local, K-profile, surface and bottom closure
    scheme

10
TOMS BOUNDARY LAYERS
  • Air-Sea interaction boundary layer from COARE
    (Fairall et al., 1996)
  • Oceanic surface boundary layer (KPP Large et
    al., 1994)
  • Oceanic bottom boundary layer (inverted KPP
    Durski et al., 2001)

11
(No Transcript)
12
TOMS BOUNDARY LAYERS
  • Air-Sea interaction boundary layer from COARE
    (Fairall et al., 1996)
  • Oceanic surface boundary layer (KPP Large et
    al., 1994)
  • Oceanic bottom boundary layer (inverted KPP
    Durski et al., 2001)
  • Wave / Current / Sediment bed boundary layer
    (Styles and Glenn, 2000)
  • Sediment transport

13
TOMS MODULES
  • Lagrangian Drifters (Klinck, Hadfield)
  • Tidal Forcing (Hetland, Signell)

14
Gulf of Maine M2 Tides

Surface Elevation (m)
15
TOMS MODULES
  • Lagrangian Drifters (Klinck, Hadfield)
  • Tidal Forcing (Hetland, Signell)
  • River Runoff (Hetland, Signell, Geyer)

16
Hudson River Estuary
30
-5
25
-10
20
Salinity (PSS)
Depth (m)
-15
15
-20
10
-25
5
25
5
15
20
10
Distance (km)
17
TOMS MODULES
  • Lagrangian Drifters (Klinck, Hadfield)
  • Tidal Forcing (Hetland, Signell)
  • River Runoff (Hetland, Signell, Geyer)
  • Biology Fasham-type Model (Moisan, Shchepetkin)
  • EcoSim Bio-Optical Model (Bissett)

18
TOMS TESTING
  • Systematic evaluation of numerical algorithms via
    robust test problems
  • Data/Model comparisons
  • Study optimal combination of algorithmic options
    for various coastal applications
  • Documentation of testing procedures

19
TOMS CODE DESIGN
  • Modular, efficient, and portable Fortran code
    (F77, F90)
  • C-preprocessing managing
  • Multiple levels of nesting
  • Lateral boundary conditions options for closed,
    periodic, and radiation
  • Arbitrary number of tracers (active and passive)
  • Input and output NetCDF data structure
  • Support for parallel execution on both shared-
    and distributed -memory architectures

20
TOMS PARALLEL DESIGN
  • Coarse-grained parallelization

21
(No Transcript)
22
TOMS PARALLEL DESIGN
  • Coarse-grained parallelization
  • Shared-memory, compiler depend directives MAIN
    (OpenMP standard)
  • Distributed-memory (MPI SMS)
  • Optimized for cache-bound computers
  • ZIG-ZAG cycling sequence of tile partitions
  • Few synchronization points (around 6)
  • Serial and Parallel I/O (via NetCDF)
  • Efficiency 4-64 threads

23
TOMS DATA ASSIMILATION
  • Nudging
  • Optimal Interpolation (OI)
  • Tangent linear and Adjoint algorithms
  • 4D VARiational data assimilation (4DVAR) and
    Physical Statistical Analysis System (PSAS)
    algorithms
  • Inverse Ocean Modeling System (IOMS)
  • Ensemble prediction platform based on singular
    value decomposition
  • Error Subspace Statistical Estimation (ESSE)

24

ESSE Flow Diagram
DE0/N

DP0/N
-
-

Most Probable Forecast

Synoptic Obs
A Posteriori Residules dr ()
Historical, Synoptic, Future in Situ/Remote
Field/Error Observations d0R0

-
-
Data Residuals
Measurement Error Covariance

d-CY(-)
Ensemble Mean



eqYj(-)
Gridded Residules

Y(-)

-


j1
Y()
Y()
Y1 Yj Yq

-
Y1 Yj Yq

0

-
E(-) P(-)

-
0



-
/-

E0 P0
0
jq
uj(o,Ip) with physical constraints
Continuous Time Model Errors Q(t)
Ea() Pa()

E() P()
25
PRESSURE GRADIENT FORCE
  • Density Jacobian Class (Blumberg and Mellor,
    1987 Song 1998 Song and Wright 1998)
  • More Accurate
  • Error vanishes with linear density profiles
  • Pressure Jacobian Class (Lin 1998 Shchepetkin
    and McWilliams, 2001)
  • JEBAR consistent
  • Conserve Energy

26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
RESULTS (YEAR 1)
  • Build TOMS from ROMS prototype
  • Mellor-Yamada, level 2.5
  • Passive and active open boundary conditions
  • Tidal forcing
  • River runoff
  • Lagrangian drifters
  • Data assimilation
  • Inter-comparison between POM and ROMS
  • Evaluation of time-stepping, advection, and
    pressure gradient algorithms
  • Initial development of TOMS web site

32
(No Transcript)
33
TRANSITION PATHS
  • To Be Determined !!!
  • Potential Users
  • NAVO
  • FNMOC
  • NOAA
  • USCG

34
PUBLICATIONS
  • Chassignet et al., 2000 Damee modeling review
  • Ezer, 2000 Mixed-layer evaluation
  • Ezer and Mellor, 2000 POM Damee application
  • Haidvogel et al., 2000 ROMS Damee application
  • Malanotte-Rizzoli et al., 2000 ROMS Damee
  • Mellor, 2001 Improved turbulence scheme
  • Mellor et al., 2001 Generalized vertical
    coordinate
Write a Comment
User Comments (0)
About PowerShow.com