Title: Wavelets: a versatile tool
 1Wavelets a versatile tool
-  Signal Processing Adaptive affine 
- time-frequency representation 
- Statistics existence test of moments
Paulo Gonçalves INRIA Rhône-Alpes, France On 
leave _at_ IST  ISR (2003-2004)
IST-ISR January 2004 
 2PDEs applied to Time Frequency Representations
- Julien Gosme (UTT, France) 
- Pierre Borgnat (IST-ISR) 
- Etienne Payot (Thalès, France) 
3Outline
- Atomic linear decompositions 
-  Classes of energetic distributions 
-  Smoothing to enhance readability 
-  Diffusion equations adaptive smoothing 
-  Open issues
4Combining time and frequencyFourier transform
- s(t) 
- s(t)  lt s(.) , d(.-t) gt 
- s(t)  lt S(.) , ei2pt. gt
- S(f) 
-  S(f)  lt s(.) , ei2pf. gt 
-  S(f)  lt S(.) , d(.-f) gt 
Blind to non stationnarities!
u
? 
 5Combining time and frequencyNon Stationarity 
Intuitive 
Fourier
x(t)
X(f) 
 6Combining time and frequencyShort-time Fourier 
Transform
lt s(.) , d(.  f) gt
lt s(.) , gt,f(.) gt  Q(t,f)
 lts(.) , TtFf g0(.) gt 
 7Combining time and frequencyWavelet Transform
frequency
time
lt s(.) , TtDa ?0 gt  O(t,f  f0/a) 
 8Combining time and frequencyQuadratic classes 
 9Smoothing to enhance readability Quadratic 
classes
NON ADAPTIVE SMOOTHING 
 10SmoothingHeat Equation and Diffusion
Uniform gaussian smoothing as solution of the 
Heat Equation (Isotropic diffusion) 
 11Adaptive SmoothingAnisotropic Diffusion
Locally control the diffusion rate with a signal 
dependant time-frequency conductance 
 12Adaptive SmoothingAnisotropic Diffusion 
 13Adaptive SmoothingAnisotropic Diffusion 
 14Combining time and frequencyWavelet Transform
-  Frequency dependent resolutions (in time  
 freq.) (Constant Q analysis)
-  Orthonormal Basis framework (tight frames) 
-  Unconditional basis and sparse decompositions 
-  Pseudo Differential operators 
-  Fast Algorithms (Quadrature filters)
STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising, 
statistical analysis
Good for Regularity spaces characterization, 
 (multi-) fractal 
analysis
Computational Cost in O(N) (vs. O(N log N) for 
FFT) 
 15Combining time and frequencyWavelet Transform
-  Frequency dependent resolutions (in time  
 freq.) (Constant Q analysis)
-  Orthonormal Basis framework (tight frames) 
-  Unconditional basis and sparse decompositions 
-  Pseudo Differential operators 
-  Fast Algorithms (Quadrature filters)
STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising, 
statistical analysis
Good for Regularity spaces characterization, 
 (multi-) fractal 
analysis
Computational Cost in O(N) (vs. O(N log N) for 
FFT) 
 16Affine classTime-scale shifts covariance 
 17Affine diffusionTime-scale covariant heat 
equations
Axiomatic approach of multiscale analysis (L. 
Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel) 
 18Affine diffusionTime-scale covariant heat 
equations
Affine Diffusion scheme 
 19Affine diffusionOpen Issues
-  Corresponding Green function (Klauder)? 
-  Corresponding operator 
-  linear? 
-  integral? 
-  affine convolution?
-  Stopping criteria? 
-  (Approached) reconstruction formula? 
-  Matching pursuit, best basis selection 
-  Curvelets, edgelets, ridgelets, bandelets, 
 wedgelets,
20Wavelet And Multifractal Analysis (WAMA)Summer 
School in Cargese (Corsica), July 19-31, 2004(P. 
Abry, R. Baraniuk, P. Flandrin, P. Gonçalves, S. 
Jaffard) 
-  Wavelets Theory and ApplicationsA. Aldroubi, 
 A. Antoniadis, E. Candes, A. Cohen, I.
 Daubechies, R. Devore, A. Grossmann, F.
 Hlawatsch, Y. Meyer, R. Ryan, B. Torresani, M.
 Unser, M. Vetterli
- Multifractals Theory and Applications 
- A. Arnéodo, E. Bacry, L. Biferale, S. Cohen, F. 
 Mendivil, Y. Meyer, R. Riedi, M. Teich, C.
 Tricot, D. Veitch
http//wama2004.org