TBA - PowerPoint PPT Presentation

About This Presentation
Title:

TBA

Description:

M. Aguiar, J.C. Aval, F. Bergeron, F. Hivert, C. Hohlweg, C. Reutenauer, M. ... Diagonally Temperley Lieb. covariants Aval Bergeron Bergeron. Sym. QSym. outline ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 29
Provided by: nantelb
Category:
Tags: tba | aval

less

Transcript and Presenter's Notes

Title: TBA


1
TBA
  • Nantel Bergeron (York University) CRC in
    mathematics

2
Totally interesting Bi - Algebras
  • Nantel Bergeron (York University) CRC in
    mathematics
  • M. Aguiar, J.C. Aval, F. Bergeron, F. Hivert,
    C. Hohlweg, C. Reutenauer, M. Rosas, F.
    Sottile, J.Y. Thibon, M. Zabrocki, ...

3
outline of my talk
Non-commutative TL invariants Bergeron-Zabrocki
Non-commutative symmetric invariants Wolf,
Rosas/Sagan, BRRZ
Symn
The Ring of Symmetric Polynomials (Sn-invariants)
Temperley-Lieb invariants Hivert
4
outline of my talk
Hopf algebras
n ? ?
5
outline of my talk
Symn
n!
Cn
quotient
Temperley-Lieb covariants
n!
Sn-covariants
6
outline of my talk
Diagonally Sn-covariants Haiman and others...
(n1)n-1
Diagonally Temperley Lieb covariants Aval
Bergeron Bergeron
Qx1,..., xny1,..., yn
DSym
DQSym
Sym
n!
Cn
n!
7
outline of my talk
n ? ?
Grothendick Hopf Algebra of the Representation
representations of all symmetric groups
Geometry Cohomology Hopf algebra of
the equivariant Grassmanians
Sym
8
outline of my talk
n ? ?
Grothendick Hopf Algebra of the Representation
representations of all Hecke algebras at
q0
Geometry ????
Sym
9
outline of my talk
n ? ?
DNSym
SSym
NSym
D?
D?
Sym
?
?
10
Sym Symmetric Polynomials
  • Action of symmetric group on polynomials
  • s.P(x1, x2, ..., xn) P(xs(1), xs(2), ...,
    xs(n))
  • The Ring of Symmetric polynomials
  • Sym P(X) s.P P
  • X x1, x2, ..., xn

Symmetric group polynomial invariants form a ring
since s.(PQ) (s.P)(s.Q)
11
Some Bases for Sym
  • Monomial symmetric polynomials ml(X)

ml(X) ? X ? orbit of X l x1 x2
... xn ? ? ?
l1 l2 ln
  • Elementary symmetric polynomials el(X)

el el1el2 ... elk and ? ei(X) ti ? (1
xit)
Sym Qe1, e2,..., en
Newton
  • Schur symmetric polynomials sl(X)

12
Hiverts Action
  • Compositions
  • a (a1, a2,..., ak), ai gt 0 and k
    ?(a) 0.
  • Monomials
  • X I xi1 xi2 ? xik
    I i1 lt i2 lt L lt ik
  • example
  • x2 x3 x5 I 2, 3, 5 and
    a (3, 1, 4)
  •  

a
a1
a2
ak
3
1
4
13
Hiverts Action
  • Hiverts action on monomials
  • s.XI Xs.I

a
a
  • Orbits of a monomial under this action for a
    fixed composition a
  • XI I ?(a )

a
14
QSym Quasi-symmetric polynomials
  • Monomial quasi-symmetric polynomial indexed by a
  • Ma(X) ? XI
  • I Í 1, 2, ..., n
  • I ?(a )
  • Hiverts Action on monomial (linear but not
    multiplicative)
  • s.XI Xs.I
  • The ring of Quasi-symmetric polynomials
  • QSym P(X) s.P P

a
a
a
15
Temperley-Lieb polynomials invariants
Hiverts action on monomials
In the symmetric group algebra QSn consider
the elements
Ei,j,k Id - (i j) - (i k) - (k j) (i j k)
(i k j)
The kernel of Hiverts action ker ? Ei,j,k ?
? QSn
QSn / ker TLn Temperley-Lieb Algebra.
(spanned by
321-avoiding permutations)
so far, this is a vector space... but it is
closed under multiplication!
QSymn Q x1, x2, ... , xnTLn
16
Sn - covariants
h1(x1, x2, ... , xn) x1 x2 ... xn
hk(x1, x2, ... , xn) x1 hk-1(x1, x2, ... , xn)
hk(x2, x3, ... , xn)
() hk(x2, x3, ... , xn) hk(x1, x2, ... ,
xn) - x1 hk-1(x1, x2, ... , xn)
If k gt 1, then hk(x2, x3, ... , xn) is in ? h1,
h2, ... , hn ?. Repeating () we get
? h1, h2, ... , hn ? ? hk(xk, xk1, ... , xn)
1 k n ?
hk(xk, xk1, ... , xn) xkk lower lex-term
17
Sn - covariants
? h1, h2, ... , hn ? ? hk(xk, xk1, ... , xn)
1 k n ?
hk(xk, xk1, ... , xn) xkk lower lex-term
xkk ? lower terms mod R
dim(R) n!
18
Sn - covariants
n
k
dim(R) n!
1
19
TLn - covariants
Aval-Bergeron-Bergeron
20
Weight on paths
A Dick path c from (0,1) to (n,n1)
x6
6
Its weight
5
x4
x4
4
3
x2
2
1
21
TLn - covariants
Aval-Bergeron-Bergeron
Theorem
Xc c Dyck path is a basis of R
22
TLn - covariants
Aval-Bergeron-Bergeron
Open Problem Find an action of TL on R?
Study the underlines geometry?
23
Interesting Properties of QSym
  • Temperley-Lieb invariants QSym Qx1, x2, ...,
    xnTLn

Hivert
  • Temperley-Lieb covariants
  • dim(TLn) dim(Qx1, x2, ..., xn / QSym )

ABB
  • Projective representation of Hn(0) Hecke
    Algebra at q0

Krob Thibon
  • Universal properties and much more...

Aguiar Bergeron Sottile
  • Geometry ????

24
Sym
25
Bi-compositions and Monomials
  • Bi-compositions
  • ( ) where ai bi gt 0

a1 a2 ... akb1 b2 ... bk
Monomials
example
26
Diagonal actions of Symmetric group
  • Classical diagonal action of symmetric group on
    polynomials
  • s.P(x1,..., xn y1, ..., yn) P(xs(1), ...,
    xs(n) ys(1), ..., ys(n))
  • DSym P(X Y) s.P P Qx1,...,
    xny1,..., yn QSn

Aval Bergeron Bergeron
27
Dn Qx1, x2, ... , xn y1, , yn/lt DQSym gt
Diagonally TL-covariants
Aval Bergeron Bergeron
Conjectured bigraded Hilbert series

degree in q
n-1
0
degree in t
0
n-1
28
Diagonally TL-covariants
Dn Qx1, x2, ... , xn y1, , yn/lt DQSym gt
Aval Bergeron Bergeron
Conjectured explicit monomial basis for
example to build for n4 and bidegree (1,1)
Start withbasis for n3
. x4
. x4y4
. y4
Build
Write a Comment
User Comments (0)
About PowerShow.com