Title: TBA
1TBA
- Nantel Bergeron (York University) CRC in
mathematics
2Totally interesting Bi - Algebras
- Nantel Bergeron (York University) CRC in
mathematics - M. Aguiar, J.C. Aval, F. Bergeron, F. Hivert,
C. Hohlweg, C. Reutenauer, M. Rosas, F.
Sottile, J.Y. Thibon, M. Zabrocki, ...
3outline of my talk
Non-commutative TL invariants Bergeron-Zabrocki
Non-commutative symmetric invariants Wolf,
Rosas/Sagan, BRRZ
Symn
The Ring of Symmetric Polynomials (Sn-invariants)
Temperley-Lieb invariants Hivert
4outline of my talk
Hopf algebras
n ? ?
5outline of my talk
Symn
n!
Cn
quotient
Temperley-Lieb covariants
n!
Sn-covariants
6outline of my talk
Diagonally Sn-covariants Haiman and others...
(n1)n-1
Diagonally Temperley Lieb covariants Aval
Bergeron Bergeron
Qx1,..., xny1,..., yn
DSym
DQSym
Sym
n!
Cn
n!
7outline of my talk
n ? ?
Grothendick Hopf Algebra of the Representation
representations of all symmetric groups
Geometry Cohomology Hopf algebra of
the equivariant Grassmanians
Sym
8outline of my talk
n ? ?
Grothendick Hopf Algebra of the Representation
representations of all Hecke algebras at
q0
Geometry ????
Sym
9outline of my talk
n ? ?
DNSym
SSym
NSym
D?
D?
Sym
?
?
10Sym Symmetric Polynomials
- Action of symmetric group on polynomials
- s.P(x1, x2, ..., xn) P(xs(1), xs(2), ...,
xs(n)) - The Ring of Symmetric polynomials
- Sym P(X) s.P P
- X x1, x2, ..., xn
Symmetric group polynomial invariants form a ring
since s.(PQ) (s.P)(s.Q)
11Some Bases for Sym
- Monomial symmetric polynomials ml(X)
ml(X) ? X ? orbit of X l x1 x2
... xn ? ? ?
l1 l2 ln
- Elementary symmetric polynomials el(X)
el el1el2 ... elk and ? ei(X) ti ? (1
xit)
Sym Qe1, e2,..., en
Newton
- Schur symmetric polynomials sl(X)
12Hiverts Action
- Compositions
- a (a1, a2,..., ak), ai gt 0 and k
?(a) 0. - Monomials
- X I xi1 xi2 ? xik
I i1 lt i2 lt L lt ik - example
- x2 x3 x5 I 2, 3, 5 and
a (3, 1, 4) -
a
a1
a2
ak
3
1
4
13Hiverts Action
- Hiverts action on monomials
- s.XI Xs.I
a
a
- Orbits of a monomial under this action for a
fixed composition a - XI I ?(a )
a
14QSym Quasi-symmetric polynomials
- Monomial quasi-symmetric polynomial indexed by a
- Ma(X) ? XI
- I Í 1, 2, ..., n
- I ?(a )
- Hiverts Action on monomial (linear but not
multiplicative) - s.XI Xs.I
- The ring of Quasi-symmetric polynomials
- QSym P(X) s.P P
a
a
a
15Temperley-Lieb polynomials invariants
Hiverts action on monomials
In the symmetric group algebra QSn consider
the elements
Ei,j,k Id - (i j) - (i k) - (k j) (i j k)
(i k j)
The kernel of Hiverts action ker ? Ei,j,k ?
? QSn
QSn / ker TLn Temperley-Lieb Algebra.
(spanned by
321-avoiding permutations)
so far, this is a vector space... but it is
closed under multiplication!
QSymn Q x1, x2, ... , xnTLn
16Sn - covariants
h1(x1, x2, ... , xn) x1 x2 ... xn
hk(x1, x2, ... , xn) x1 hk-1(x1, x2, ... , xn)
hk(x2, x3, ... , xn)
() hk(x2, x3, ... , xn) hk(x1, x2, ... ,
xn) - x1 hk-1(x1, x2, ... , xn)
If k gt 1, then hk(x2, x3, ... , xn) is in ? h1,
h2, ... , hn ?. Repeating () we get
? h1, h2, ... , hn ? ? hk(xk, xk1, ... , xn)
1 k n ?
hk(xk, xk1, ... , xn) xkk lower lex-term
17Sn - covariants
? h1, h2, ... , hn ? ? hk(xk, xk1, ... , xn)
1 k n ?
hk(xk, xk1, ... , xn) xkk lower lex-term
xkk ? lower terms mod R
dim(R) n!
18Sn - covariants
n
k
dim(R) n!
1
19TLn - covariants
Aval-Bergeron-Bergeron
20Weight on paths
A Dick path c from (0,1) to (n,n1)
x6
6
Its weight
5
x4
x4
4
3
x2
2
1
21TLn - covariants
Aval-Bergeron-Bergeron
Theorem
Xc c Dyck path is a basis of R
22TLn - covariants
Aval-Bergeron-Bergeron
Open Problem Find an action of TL on R?
Study the underlines geometry?
23Interesting Properties of QSym
- Temperley-Lieb invariants QSym Qx1, x2, ...,
xnTLn
Hivert
- Temperley-Lieb covariants
- dim(TLn) dim(Qx1, x2, ..., xn / QSym )
ABB
- Projective representation of Hn(0) Hecke
Algebra at q0
Krob Thibon
- Universal properties and much more...
Aguiar Bergeron Sottile
24Sym
25Bi-compositions and Monomials
- Bi-compositions
- ( ) where ai bi gt 0
a1 a2 ... akb1 b2 ... bk
Monomials
example
26Diagonal actions of Symmetric group
- Classical diagonal action of symmetric group on
polynomials - s.P(x1,..., xn y1, ..., yn) P(xs(1), ...,
xs(n) ys(1), ..., ys(n)) - DSym P(X Y) s.P P Qx1,...,
xny1,..., yn QSn
Aval Bergeron Bergeron
27Dn Qx1, x2, ... , xn y1, , yn/lt DQSym gt
Diagonally TL-covariants
Aval Bergeron Bergeron
Conjectured bigraded Hilbert series
degree in q
n-1
0
degree in t
0
n-1
28Diagonally TL-covariants
Dn Qx1, x2, ... , xn y1, , yn/lt DQSym gt
Aval Bergeron Bergeron
Conjectured explicit monomial basis for
example to build for n4 and bidegree (1,1)
Start withbasis for n3
. x4
. x4y4
. y4
Build