Title: Solution Thermodynamics
1Solution Thermodynamics
- Richard Thompson
- Department of Chemistry
- University of Durham
- r.l.thompson_at_dur.ac.uk
2Overview
- Part 1
- Statistical thermodynamics of a polymer chain
- How much space does a polymer chain occupy?
- Part 2
- Chemical thermodynamics of polymer solutions
- What determines solubility of a polymer?
- Examine
- (i) Models of polymer chain structure in solution
- (ii) Interactions between polymers and solvents
3The freely jointed chain
- Simplest measure of a chain is the length along
the backbone - For n monomers each of length l, the contour
length is nl
4A more useful measure is the end-to-end distance
r
- For an isolated polymer in a solvent the
end-to-end distance will change continuously due
to molecular motion - But many conformation give rise to the same value
of r, and some values of r are more likely than
others e.g., - Only one conformation with r nl - a fully
extended chain - Many conformation have r 0, (cyclic polymers)
- Define the root mean square end-to-end distance
5A freely jointed chain in 1D
- Each link (monomer) can step to either left or
right with equal probability - End-to-end distance
l
vector of each monomer ? l
6End-to-End Distance
- If i j then ri . rj l2
- If i ? j then ri . rj l. l l2
- or - l.- l l2
- or - l. l -l2
- or l.- l -l2
- all with equal probability
- Hence lt ri . rj gt i ? j 0
7See handout notes for derivation Key result for
a freely jointed chain
8Bond angles and steric effects
- Real chains are not freely jointed
- Links between monomers subject to bond angle
restrictions - Rotation hindered by steric effects
- E.g., n-butane
- Each bond angle q 109.5
- Different conformations arise from rotation of 1
and 2 about 3-4 bond - Steric interactions between methyl groups ? not
all angles of rotation have the same energy
9Valence angle model
- Simplest modification to the freely jointed chain
model - Introduce bond angle restrictions
- Allow free rotation about bonds
- Neglecting steric effects (for now)
- If all bond angles are equal to q,
-
- indicates that the result is for the valence
angle model - E.g. for polyethylene q 109.5 and cos q
-1/3, hence,
10Rotational isomeric state theory
- Steric effects lead to
- f is defined by f 0 as the planar trans
orientation - ltcosf gt is the average of cosf , based on the
probability of each angle f , determined by its
associated energy and the Boltzmann relation - Generally f lt 90º are the most energetically
favourable angles - Steric effects cause chains to be more stretched
- What about temperature effects????
11Steric parameter and the characteristic ratio
- In general
- where s is the steric parameter, which is usually
determined for each polymer experimentally - A measure of the stiffness of a chain is given by
the characteristic ratio -
- C? typically ranges from 5 - 12
12An equivalent freely jointed chain
- A real polymer chain may be represented by an
equivalent freely-jointed chain - Comprised of N monomers of length b such that the
chains have the same contour length, i.e., Nb
nl - Normally has fewer, longer joints
13Excluded volume
- Freely jointed chain, valence angle and
rotational isomeric states models all ignore - long range intramolecular interactions (e.g.
ionic polymers) - polymer-solvent interactions
- Such interactions will affect
- Define
-
- where is the expansion parameter
14The expansion parameter
- ar depends on balance between i) polymer-solvent
and ii) polymer-polymer interactions - If (ii) are more favourable than (i)
- ar lt 1
- Chains contract
- Solvent is poor
- If (ii) are less favourable than (i)
- ar gt 1
- Chains expand
- Solvent is good
- If these interactions are equivalent, we have
theta condition - ar 1
- Same as in amorphous melt
15The theta temperature
- For most polymer solutions ar depends on
temperature, and increases with increasing
temperature - At temperatures above some theta temperature, the
solvent is good, whereas below the solvent is
poor, i.e., - What determines whether or not a polymer is
soluble?
T gt q ar gt 1
T q ar 1
T lt q ar lt 1
Often polymers will precipitate out of solution,
rather than contracting
16R.M.S. Radius of Gyration lts2gt1/2
- Another way of characterising size
- Defined as the average distance of chain segments
from the centre of the chain - For linear polymers,
- Particularly useful for branched/cyclic polymers
- Cannot meaningfully define an end-to-end distance
- R.M.S. radius of gyration is uniquely defined and
a useful measure of size (or volume occupied)
17Flory Huggins Theory
- Dissolution of polymer increases conformational
entropy of system - Molar entropy of mixing normally written as
- where fi is the volume and volume fraction of
each component (solvent 1 and polymer 2), ri
is approximately the degree of polymerisation of
each component (r1 1, r2 N) -
- Note that increasing the r2 decreases the
magnitude of DSmix
18Flory Huggins Theory 2
- Enthalpy of mixing
- DHMix kT cf2N1
- where c is the dimensionless Flory Huggins
parameter. - For dilute solution of high molecular weight
polymers, NN1 - DHMix RT cf2
- Remember condition for thermodynamically stable
solution - DGMix DHMix - TDSMix lt 0
19Practical Use of Polymer TDsFractionation
- Consider solution in poor solvent of two
polymers, p1 and p2. - Flory-Huggins tells us that if p2 has higher
molecular weight it should precipitate more
readily than p1 - add non-solvent until solution becomes turbid
- heat, cool slowly and separate precipitate
- finite drop in temperature always renders finite
range of molecular weight insoluble - some p2 will also remain soluble!
1 phase clear solution
T
p2
2 phase cloudy
p1
f2 volume fraction polymer
20Summary
- A little knowledge goes a long way!
- Simple models enable us to predict the size of
polymer chains in solution - Critical to dynamic properties of solutions (next
lecture) - Solubility of polymers generally decreases with
increasing molecular weight. - Can exploit this in fractionation procedures to
purify polymers - There are practical limits to how well
fractionation can work