Spontaneity, Entropy and Free Energy - PowerPoint PPT Presentation

1 / 56
About This Presentation
Title:

Spontaneity, Entropy and Free Energy

Description:

Keep in Mind the Following Key Concepts When Doing Enthalpy calculations: ... These follow Hess's Law as with Enthalpy, so use values for So from tables to calculate. ... – PowerPoint PPT presentation

Number of Views:299
Avg rating:3.0/5.0
Slides: 57
Provided by: ef13
Category:

less

Transcript and Presenter's Notes

Title: Spontaneity, Entropy and Free Energy


1
Chapter 16
  • Spontaneity, Entropy and Free Energy
  • (Chemical Thermodynamics)

2
THERMODYNAMICS EQUATIONS
  • ?E q w
  • w - P?V -?nRT
  • q ?H
  • ?Suniverse ?Ssystem ?Ssurroundings
  • ?S ?H/T
  • ?So ? n Soproducts - ? n Soreactants
  • ?Ho ? n Hoproducts - ? n Horeactants
  • ?Gfo ? n Gfoproducts - ? n Gforeactants
  • ?G ?H - T ?S
  • ?G ?Go RT ln Q
  • Q ?(Pproducts)a / ? (Preactants)b
  • R 8.314 joules/mol x K
  • ?Go - RT ln Qequilibrium
  • and Qequilibrium K

3
THERMODYNAMICS
  • The study of energy changes in chemical and
    physical systems.
  • Processes run in a continuum
  • Spontaneous processes
  • Equilibrium processes
  • Nonspontaneous processes

4
The domains of kinetics and thermodynamics
5
Exothermic versus endothermic
Surroundings
Surroundings
EXOTHERMIC
ENDOTHERMIC
Energy
Energy
System ?H ? 0 ?E ? 0 (-)
System ?H ? 0 ?E ? 0 ()
6
  • Given the following data
  • S(s) 3/2 O2(g) ?? SO3(g) ?Ho
    -395.2 kJ
  • 2SO2(g) O2(g) ?? 2SO3(g) ?Ho
    -198.2 kJ
  • Calculate ?Ho for the reaction
  • S(s) O2(g) ?? SO2(g)

7
  • Given the following data
  • N2(g) 2O2(g) ?? 2NO2(g) ?Ho 67.7 kJ
  • N2(g) 2O2(g) ?? N2O4(g) ?Ho 9.7 kJ
  • Calculate ?Ho for the dimerization of NO2
  • 2NO2(g) ?? N2O4(g)

8
  • Given the following data
  • C2H2(g) 5/2 O2(g) ?? 2CO2(g) H2O(l)
    ?Ho -1300. kJ
  • C(s) O2(g) ?? CO2(g) ?Ho -394 kJ
  • H2(g) ½ O2(g) ?? H2O(l) ?Ho -286 kJ
  • Calculate ?Ho for the reaction
  • 2C(s) H2(g) ?? C2H2(g)

9
  • Given the following data
  • 2O3(g) ?? 3O2(g) ?Ho -427 kJ
  • O2(g) ?? 2O(g) ?Ho 495 kJ
  • NO(g) O3(g) ?? NO2(g) O2(g)
  • ?Ho -199 kJ
  • Calculate ?Ho for the reaction
  • NO(g) O(g) ?? NO2(g)

10
  • Keep in Mind the Following Key Concepts When
    Doing Enthalpy calculations
  • When a reaction is reversed, the magnitude of ?H
    remains the same but its sign changes.
  • When the balanced equation for a reaction is
    multiplied by an integer, the value of ?H for
    that reaction must be multiplied by the same
    integer.
  • The change in enthalpy for a given reaction can
    be calculated from the enthalpies of formation of
    the reactants and products
  • ?Horeaction ? np ?Hof(products) - ? nr
    ?Hof(reactants)
  • Elements in their standard states are not
    included in the ?Hreaction calculations. That
    is, ?Hof for an element in its standard state is
    zero.

11
Spontaneous Processes
  • ?H, Enthalpy ?? Heat
  • Exothermic, ?H lt 0 (-)
  • Endothermic, ?H gt 0 ()
  • ?S, Entropy ?? Randomness
  • Increased randomness, ?S gt 0 ()decrease
    randomness, ?S lt 0 (-)

12
? S, positive entropy changes
  • Solids ?? Liquids ?? Gases
  • and into solutions of each

13
  • In each case tell which reaction, the forward or
    the reverse, is favored by entropy changes.
  • a. 4NH3(g) 3O2(g) ?? 2N2(g) 6H2O(g)
  • b. 4NO(g) 6H2O(g) ?? 4NH3(g) 5O2(g)
  • c. C(s) CO2(g) ?? 2CO(g)
  • d. 2O3(g) ?? 3O2(g) e. CH3OH(l) ??CH3OH(g)

14
  • C6H4(OH)2(aq) ?? C6H4O2(aq) H2(g)
  • ?Ho 177.4 kJ
  • H2(g) O2(g) ?? H2O2 (aq)
  • ?Ho -191.2 kJ
  • H2(g) ½ O2(g) ?? H2O(g)
  • ?Ho -241.8 kJ
  • H2O(g) ?? H2O(l)
  • ?Ho -43.8 kJ

15
Spontaneous Processes
  • ?H, Enthalpy ? Heat
  • Exothermic, ?H lt 0 (-)
  • Endothermic, ?H gt 0 ()
  • ?S, Entropy ? Randomness
  • Increased randomness, ?S gt 0 ()decrease
    randomness, ?S lt 0 (-)

16
SECOND LAW OF THERMODYNAMICS
  • Entropy (randomness) of the universe
  • tends toward a maximum (increases).
  • ? Suniverse ? Ssystem ? Ssurroundings
  • ? Suniverse gt 0 ?? spontaneous
  • ? Suniverse lt 0 ?? spontaneous in the
    opposite direction
  • ? Suniverse 0 ?? equilibrium
  • ?S Sfinal - Sinitial

17
Interplay of ?Ssys and ?Ssurr in Determining the
Sign of ?Suniv
  • Signs of Entropy Changes
  • ?Ssys ?Ssurr ?Suniv Process Spontaneous?
  • Yes
  • - - - No (reaction will occur in
    opposite direction)
  • - ? Yes, if ?Ssys has a larger
    magnitude than ?Ssurr
  • - ? Yes, if ?Ssurr has a large
    magnitude than ?Ssys

18
STANDARD ENTROPY VALUES, So
  • Conditions solid or liquid - pure substance
  • gas one atmosphere pressure solution - one
    mole/ liter, M
  • temperature of 25oC or 298 K
  • These follow Hesss Law as with Enthalpy, so use
    values for So from tables to calculate.
  • ?So ? n Soproducts - ? n Soreactants

19
  • Calculate ?So for each of the following
    reactions.
  • a. H2(g) ½ O2(g) ?? H2O(g)
  • b. 3O2(g) ?? 2O3(g)
  • c. N2(g) O2(g) ?? 2NO(g)
  • d. N2(g) 3H2(g) ?? 2NH3(g)
  • e. HCl(g) ?? H(aq) Cl-(aq)

20
  • For the reaction
  • CS2(g) 3O2(g) ?? CO2(g) 2SO2(g)
  • ?So is equal to 143 J/K. Use this value and
    data to calculate the value of So for CS2(g).
  • For the reaction
  • 2Al(s) 3Br2(l) ?? 2AlBr3(s)
  • ?So is equal to 144 J/K. Use this value and
    data to calculate the value of So for solid
    aluminum bromide.

21
THIRD LAW OF THERMODYNAMICS
  • Absolute Entropy, S, 0 at 0 Kelvins for
  • a perfect crystal of a pure substance.
  • Changes in entropy, ? S, are used to calculate
  • in an equilibrium system,
  • ? S ? H / T

22
  • The boiling point of chloroform (CHCl3) is
    61.7oC. The enthalpy of vaporization is 31.4
    kJ/mol. Calculate the entropy of vaporization.
  • For mercury, the enthalpy of vaporization is
    58.51 kJ/mol and the entropy of vaporization is
    92.92 J/K.mol. What is the normal boiling point
    of mercury?

23
?G, Gibbs Free Energy
  • Is the maximum amount of energy available
  • to do useful work on the surroundings.
  • ?G ? H T ? S
  • ?G lt 0 (-) ?? Spontaneous
  • ?G gt 0 () ?? Spontaneous in the opposite
  • direction
  • ?G 0 ?? equilibrium

24
?G, Gibbs Free Energy
  • Is the maximum amount of energy available
  • to do useful work on the surroundings.
  • ?G ? H T ? S
  • ?G lt 0 (-) ?? Spontaneous
  • ?G gt 0 () ?? Spontaneous in the opposite
  • direction
  • ?G 0 ?? equilibrium

25
Variation of free energy with extent of reaction
Spontaneous in Opposite direction
Equal
?G is spontaneous
26
  • Given the values of ?H and ?S, which of the
    following changes will be spontaneous at constant
    T and P?
  • a. ?H 25 kJ, ?S 5 J/K, T 300K
  • b. ?H 25 kJ, ?S 100 J/K, T
    300K
  • c. ?H -10 kJ, ?S 5 J/K, T
    298K
  • d. ?H -10 kJ, ?S -40 J/K, T
    200K
  • e. ?H -10 kJ, ?S -40 J/K, T
    300K
  • f. ?H -10 kJ, ?S -40 J/K, T
    500K
  • g. ?H 5 kJ, ?S -5 J/K, T 10K
  • h. ?H 5 kJ, ?S -5 J/K, T 1000K

27
  • ?G ?H - T ?S ?G 25 x 103 J (300 K)(5
    J/K)
  • Note We must be consistent on units. Typically
    enthalpy values are in kJ and entropy in J/K. We
    must use the same energy units for both if we are
    using the equation
  • ?G ?H - T ?S.
  • ?G 23,500 J ? 24,000 K Not spontaneous
  • ?G 25,000 J (300 K)(100 J/K) -5000 J
    Spontaneous
  • Without calculating ?G, we know this reaction
    will be spontaneous at all temperatures. ?H is
    negative and ?S is positive (- T ?S lt 0), ?G will
    always be less than zero.
  • ?G -10,000 J (200 K)(-40 J/K) -2000J

28
  • ?G -10,000 J (300 K)(-40 J/K) 2000J Not
    spontaneous
  • ?G -10,000 J (500 K)(-40 J/K) 10,000J
    Not spontaneous
  • Since ?H is positive and ?S is negative (-T ?S is
    positive) the value of ?G will be greater than
    zero regardless of the temperature. Thus, this
    change is not spontaneous at any temperature.
  • Not spontaneous, see (c).

29
  • From data in Tables, calculate ?Ho, ?So, and ?Go
    for each of the following reactions at 25oC.
  • a. CH4(g) 2O2(g) ?? CO2(g) 2H2O(g)
  • b. 6CO2(g) 6H2O(l) ?? C6H12O6(s) 6O2(g)
  • glucose
  • c. P4O10(s) 6H2O(l) ?? 4H3PO4(s)
  • d. HCl(g) NH3(g) ?? NH4Cl(s)

Hesss Law also work for ?G ?Go ?(n
?Gofproducts) - ? (n ?Gofreactants) Calculate
?Ho,?So, ?Go ?H - T ?S
30
  • Standard free energies of formation in kJ/mole at
    25oC
  • Al(s) 0.0 CCl4(g) -60.63
  • Al2O3(s) -1582. C2H5OH(l) -174.9
  • Br2(l) 0.0 C2H5OH(g) -168.6
  • Br2(g) 3.142 CH3COOH(l) -390.0
  • C(graphite) 0.0 CH3COOH(g) -374.0
  • C(diamond) 2.900 Ca(s) 0.0
  • CO(g) -137.15 CaO(s) -604.2
  • CO2(g) -394.36 Ca(OH)2(s) -896.76
  • CH4(g) -50.75 CaSO4(s) -1320.3
  • C2H6(g) -32.9 Cl2(g) 0.0
  • C2H4(g) 68.12 Cu(s) 0.0
  • C2H2(g) 209.2 CuO(s) -130.
  • C3H8(g) -23.49 F2(g) 0.0
  • C6H6(l) 124.50 Fe(s) 0.0
  • C6H6(g) 129.66 Fe2O3(s) -742.2
  • CH3OH(l) -166.4 H2(g) 0.0
  • CH3OH(g) -162.0 H2O(l) -237.18
  • CS2(l) 65.27 H2O(g) -228.59

31
  • HCl(g) -95.299 Na2O2(s) -451.
  • HBr(g) -53.43 NaOH(s) -381.
  • HI(g) 1.7 O2(g) 0.0
  • I2(s) 0.0 Pb(s) 0.0
  • K(s) 0.0 PbO2(s) -217.4
  • KCl(s) -408.32 PbSO4(s) -811.2
  • Mg(s) 0.0 S(s) 0.0
  • MgCl2 -592.33 SO2(g) -300.19
  • MgO(s) -569.57 SO3(g) -371.1
  • Mg(OH)2(s) -833.75 H2S(g) -33.6
  • N2(g) 0.0 H2SO4(l) -690.101
  • NH3(g) -16.5 Si(s) 0.0
  • N2O(g) 104.2 SiO2(s) -856.67
  • NO(g) 86.57 SiH4(g) 56.9
  • NO2(g) 51.30 SiF4(g) -1572.7
  • Na(s) 0.0 SiCl4(l) -619.90
  • NaF(s) -541.0 SiCl4(g) -617.01
  • NaCl(s) -384.03 Zn(s) 0.0
  • NaBr(s) -347 ZnO(s) -318.3

32
?Go, STANDARD FREE ENERGY CHANGES
  • Will the reaction or phase change be spontaneous
  • for standard state substances?
  • ?Go ?Ho - T ?So
  • First calculate ?Ho and ?So using Hesss Law for
    each and the tables of values. Then calculate
    ?Go as above

33
Various Possible Combinations of ?H and ?S for a
Process and the ResultingDependence of
spontaneity on Temperature
  • Case Result
  • ?S positive, ?H negative Spontaneous at all
    temperature
  • ?S positive, ?H positive Spontaneous at high
    temperatures
  • (where exothermicity is relatively unimportant)
  • ?S negative, ?H negative Spontaneous at low
    temperatures
  • (where exothermicity is dominant)
  • ?S negative, ?H positive Process not spontaneous
    at any temperature (reverse process is
    spontaneous at all temperatures)

34
  • For the reaction
  • SF4(g) F2(g) ?? SF6(g)
  • The value of ?Go is 374 kJ. Use this value and
    data from Tables to calculate the value of ?Gof
    for SF4(g).
  • Two crystalline forms of white phosphorus are
    known. Both forms contain P4 molecules, but the
    molecules are packed together in different ways.
    The ? form is always obtained when the liquid
    freezes. However, below 76.9oC, the ? form
    spontaneously converts to the ? form
  • P4(s, ?) ?? P4(s, ?)
  • a. Predict the signs of ?H and ?S for this
    process
  • b. Predict which form of phosphorus has the
    more ordered crystalline structure.

35
  • Hydrogen cyanide is produced industrially by the
    following reactions
  • 1000oC
  • 2NH3(g) 3O2(g) 2CH4(g) ????
    Pt-Rh
  • 2 HCN(g) 6H2O(g)
  • Is the high temperature needed for thermodynamic,
    or kinetic, reasons?

36
  • Hydrogen cyanide is produced industrially by the
    following reactions
  • 2NH3(g) 3O2(g) 2CH4(g) ?? 2HCN(g)
    6H2O(g)
  • ?Hfo -46 0 -75 135.1 -242
  • (kJ/mole)
  • So 193 205 186 202 189
  • (J/K.mol)
  • Is the high temperature needed for thermodynamic,
    or kinetic, reasons?
  • Is ?Greaction , -, or 0
  • How will we calculate ?Greaciton _at_100oC?
  • Hesss Law? No it uses ?Gof values.
  • ?Gorx ?Ho - T ?So
  • ?Sorx ?(nSoproducts) - ?(n ?Hof reactants)
  • Is ?Go , - at 1000oC (1273k)
  • Is ?G , - at room temperature (300k)
  • Why not use ?Gof ? (n ?Goproducts) - ? (n
    ?Gorx)
  • Signs of ?H and ?S ? Rx is spontaneous at all
    temperatures, no thermodynamic reason for
    temperature to be high, therefore reason is to
    increase reaction rate.

1000oC
Pt-Rh
37
  • 2 NH3(g) 3O2(g) 2CH4(g) ?? 2HCN(g)
    6H2O(g)
  • ?Hof -46 0 -75 135.1 -242
  • (kJ/mol)
  • So 193 205 186 202 189
  • ? Gorx ? Ho -T ? So
  • ? Sorx ?(nSoproducts)- ? (nSoreactants)
  • ? Hreaction ?(nSoproducts)- ? (nSoreactants)

38
?G 0FREE ENERGY AT EQUILIBRIUM
  • ?G ?Go RT ln Q
  • Where ?Go is found in APPENDIX R 8.317
    joules/ mol x k,
  • T Kelvins,
  • And Q Reaction Quotient.
  • Q ?(Pproducts)a / ?(Preactants)b
  • ? ?? multiplication of each pressure or
    concentration of product or reactant in the
    equation.
  • a,b, ? coefficients of the equation become
    exponents

39
FREE ENERGY AND EQUILIBRIUM
  • At ? G 0,
  • ? G ? Go R T ln Q
  • Where Q reaction quotient
  • R 8.314 joules/ mol . K
  • So ?Go -RT ln Qequilibrium
  • And Qequiliibrium Kp (gases)
  • Kc (solution)
  • Where Standard States are used,
  • (1 atmosphere, 1 M, 298 K)

40
Write the reaction quotient for each of the
following reactions. a. 2HF(g) ??? H2(g)
F2(g) b. 2NO(g) O2(g) ??? 2NO2(g) c. Ca(s)
Cl2(g) ??? CaCl2(s) d. SiF4(g) 2H2O(l)
??? SiO2(s) 4HF(g) e. 2HgO(s) ??? 2Hg(l)
O2(g) f. NH4Cl(s) ??? NH3(g) HCl(g)
41
K, EQUILIBRIUM CONSTANT
  • At ? G 0,
  • ? G ? Go RT ln Q
  • So ? Go - RT ln Qequilibrium
  • And Qequilibrium K
  • Where K is the equilibrium constant.
  • At K ltlt 1, mostly reactants present,
  • K gtgt 1, mostly products present,
  • K 1, equal products and reactants present
  • Using ? Go values, the equilibrium constants may
    be calculated.

42
  • The equilibrium constant for the following
    reaction at 45oC is 0.65
  • N2O4(g) ??? 2NO2(g)
  • What is the value of ?Go at 45oC for this
    reaction?

43
  • The equilibrium constant at 440oC for the
    following reaction is 0.020.
  • 2HI(g) ??? H2(g) I2(g)
  • What would you expect to be the sign of the value
    of the change in standard free energy?

44
  • One of the reactions that destroys ozone in the
    upper atmosphere is
  • NO(g) O3(g) ??? NO2(g) O2(g)
  • Using data from Tables, calculate ?Go and K (at
    298 K) for this reaction.
  • Use Hess Law for ?Go values or ?Go ?H - T ?So,
    if ?Go values not available.

45
  • Hydrogen sulfide can be removed from natural gas
    by the reaction.
  • 2H2S(g) SO2(g) ??? 3S(s) 2H2O(g)
  • Calculate ?Go and K (at 298 K) for this reaction.
    Would this reaction be favored at a high or low
    temperature?
  • ?Go -RT LnQequil -RT LnK
  • First calculate ?Go from tables than K.

46
LeCHATELIERS PRINCIPLE
  • A system at equilibrium will shift to a new
    equilibrium to partially remove any external
    stress. Consider the effects of
  • -- Concentration changes
  • -- Pressure changes
  • -- Temperature
  • -- Catalysts

47
LeCHATELIERS PRINCIPLEConcentration changes
  • K constant but look at Q
  • ?G -, KgtQ causes a shift to increase Q.
  • ?G , KltQ causes a shift to decrease Q.
  • H2(g) Cl2(g) ??? 2HCl(g)
  • So as HCl goes up, Q goes up, KltQ

48
LeCHATELIERS PRINCIPLETemperature changes
  • At equilibrium,
  • ? Go - RT ln K and ? Go ?Ho - T ?So
  • so - RT ln K ? Ho - T ? So
  • or ln K - ? Ho/RT ? So/R
  • If T goes up, K goes up when ? Ho gt 0 i.e. ?H
  • T goes up, K goes down when ? Ho lt 0. i.e.
    -?H
  • At Two temperatures,
  • What is effect of a large K value on ?Go? Ln K
    is and therefore reaction goes as written.
    What is effect of temperature on K? K large
    means more products.

49
SUMMARY
  • Reaction spontaneity is the bottom line for
    chemical thermodynamics.
  • The sign of ?G, - , , or 0 tells the
    difference between initial and final states.
  • Maximum work, wmax ?G
  • The maximum possible useful work obtainable from
    a process at constant temperature and pressure is
    equal to the change in free energy.

50
THERMODYNAMICS EQUATIONS
  • ?E q w
  • w - P?V -?nRT
  • q ?H
  • ?Suniverse ?Ssystem ?Ssurroundings
  • ?S ?H/T
  • ?So ? n Soproducts - ? n Soreactants
  • ?Ho ? n Hoproducts - ? n Horeactants
  • ?Gfo ? n Gfoproducts - ? n Gforeactants
  • ?G ?H - T ?S
  • ?G ?Go RT ln Q
  • Q ?(Pproducts)a / ? (Preactants)b
  • R 8.314 joules/mol x K
  • ?Go - RT ln Qequilibrium
  • and Qequilibrium K

51
  • Predict direction in which system will shift to
    reach equilibrium.
  • Predicting direction calculate Q from
  • ?G ?Go RT ln(Q)

52
  • At 25oC
  • 4Fe(s) 3O2(g) ??? 2Fe2O3(g)
  • Calculate ?Go two ways.

53
  • Free Energy equilibrium
  • ? G - R T ln k
  • ? G ? Go R T ln Q
  • at equilibium ? G 0, and Q 0
  • ? G - R T ln k
  • When substance undergo chemical reaction,
    reaction proceeds with minimum fill energy
    (equil) which corresponds to
  • Gproduct Greactant
  • ?G Gproduct Greactant 0

54
  • ?Go 0
  • Gp Gr when all components are in standard
    states 1 atm for gases.
  • ?Go lt 0 Gop Gor is negative A ??? B
  • therefore Gop lt Gor k B/A K
    lt 1
  • According to LeChatelier Principle will
    adjust to right to reach equilibrium
  • ?Go gt 0 Gop Gor is positive A ??? B
  • Gop gt Gor k B/A
    K gt 1
  • According to LeChatelier Principle reaction
    will shift to left

55
Energy/enthalpy changes
  • ?H heat changes at constant pressure.
  • ?E q w
  • If w - P ? V
  • and q ?H
  • then ?E ?H P ? V

56
STATE FUNCTIONS
  • ?E, ?H, and ?V are state functions.
  • They are dependent only on initial and final
    states regardless of the path between states.
  • Capital letters are used for state functions.
  • q and w are not state functions.
Write a Comment
User Comments (0)
About PowerShow.com