Fundamentals and Applications of Bainitic Steels - PowerPoint PPT Presentation

1 / 66
About This Presentation
Title:

Fundamentals and Applications of Bainitic Steels

Description:

Fundamentals and Applications of Bainitic Steels – PowerPoint PPT presentation

Number of Views:148
Avg rating:3.0/5.0
Slides: 67
Provided by: HARRYBH8
Category:

less

Transcript and Presenter's Notes

Title: Fundamentals and Applications of Bainitic Steels


1
Fundamentals and Applications of Bainitic Steels
2
(No Transcript)
3
(No Transcript)
4
upper bainite
1 µm
5
lower bainite
6
Surface 1
Surface 2
50 µm
Srinivasan Wayman, 1968
7
s
d
c
r
1
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
50 µm
12
(No Transcript)
13
Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
14
Fe-0.4C wt
Decarburisation time / s
Temperature / C
15
(No Transcript)
16
Temperature
Ae3'
T'
o
x
Carbon in austenite
17
(No Transcript)
18
Growth is diffusionless.
Strain energy must be accounted for.
19
Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
Takahashi and Bhadeshia
20
(No Transcript)
21
Oka and Okamoto
22
Ohmori and Honeycombe
23
(No Transcript)
24
(No Transcript)
25
Each point represents a different steel
Bhadeshia, 1981
26
The nucleation of bainite must involve the
partitioning of carbon
Why does the required free energy vary linearly
with T?
27
hexagonal close-packed
cubic close-packed
Christian, 1951
28
Brooks, Loretto and Smallman, 1979
29
Olson Cohen, 1976
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
Nucleation of bainite must involve the
partitioning of carbon.
Mechanism of nucleation is otherwise identical to
that of martensite.
34
Fe-2Si-3Mn-C wt
800
B
S
600
Temperature / K
400
M
S
200
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Carbon / wt
35
Fe-2Si-3Mn-C wt
1.E08
1 year
1 month
Time / s
1.E04
1.E00
0
0.5
1
1.5
Carbon / wt
36
Low transformation temperature Bainitic
hardenability Reasonable transformation
time Elimination of cementite Austenite grain
size control Avoidance of temper embrittlement
wt
37
Isothermal
Austenitisation
Homogenisation
transformation
1200
C
o
2 days
1000
o
C
15 min
Temperature
125
o
C
-
325
o
C
Air
slow
hours
-
months
cooling
cooling
Quench
Time
38
(No Transcript)
39
g
g
a
a
a
Caballero, Mateo, Bhadeshia
200 Å
40
Low temperature transformation 0.25 T/Tm Fine
microstructure 20-40 nm thick plates Harder
than most martensites (710 HV) Carbide-free Design
ed using theory alone
41
Very strong Huge uniform ductility
g
g
a
No deformation No rapid cooling No residual
stresses
a
Cheap Uniform in very large sections
a
200 Å
42
Stress / GPa
Velocity km s-1
Hammond and Cross, 2004
43
more serious battlefield threats
44
ballistic mass efficiency consider unit area of
armour
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
Caballero, Mateo, Bhadeshia
49
Caballero, Mateo, Bhadeshia
50
(No Transcript)
51
Sherif, 2005, Ph.D. thesis, Cambridge
52
(No Transcript)
53
Geometrical percolation threshold of overlapping
ellipsoids
54
(No Transcript)
55
0.4 C 2 Si 3 Mn wt
1 µm
56
Very poor toughness!
57
50 µm
58
Fe-1C-1.5Si wt periodic cracking stress
transfer length
Chatterjee Bhadeshia, 2005
59
(No Transcript)
60
Carbide-free alloys
wt
61
(No Transcript)
62
Impact Energy
Charpy impact / J
Temperature / C
Test temperature / C
63
(No Transcript)
64
kilocycles to Crack Initiation
Yates, Jerath
65

Yates, Jerath
66
U.K.
Write a Comment
User Comments (0)
About PowerShow.com