Title: Fundamentals and Applications of Bainitic Steels
1Fundamentals and Applications of Bainitic Steels
2(No Transcript)
3(No Transcript)
4upper bainite
1 µm
5lower bainite
6Surface 1
Surface 2
50 µm
Srinivasan Wayman, 1968
7s
d
c
r
1
8(No Transcript)
9(No Transcript)
10(No Transcript)
1150 µm
12(No Transcript)
13Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
14Fe-0.4C wt
Decarburisation time / s
Temperature / C
15(No Transcript)
16Temperature
Ae3'
T'
o
x
Carbon in austenite
17(No Transcript)
18Growth is diffusionless.
Strain energy must be accounted for.
19Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
Takahashi and Bhadeshia
20(No Transcript)
21Oka and Okamoto
22Ohmori and Honeycombe
23(No Transcript)
24(No Transcript)
25Each point represents a different steel
Bhadeshia, 1981
26The nucleation of bainite must involve the
partitioning of carbon
Why does the required free energy vary linearly
with T?
27hexagonal close-packed
cubic close-packed
Christian, 1951
28Brooks, Loretto and Smallman, 1979
29Olson Cohen, 1976
30(No Transcript)
31(No Transcript)
32(No Transcript)
33Nucleation of bainite must involve the
partitioning of carbon.
Mechanism of nucleation is otherwise identical to
that of martensite.
34Fe-2Si-3Mn-C wt
800
B
S
600
Temperature / K
400
M
S
200
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Carbon / wt
35Fe-2Si-3Mn-C wt
1.E08
1 year
1 month
Time / s
1.E04
1.E00
0
0.5
1
1.5
Carbon / wt
36Low transformation temperature Bainitic
hardenability Reasonable transformation
time Elimination of cementite Austenite grain
size control Avoidance of temper embrittlement
wt
37Isothermal
Austenitisation
Homogenisation
transformation
1200
C
o
2 days
1000
o
C
15 min
Temperature
125
o
C
-
325
o
C
Air
slow
hours
-
months
cooling
cooling
Quench
Time
38(No Transcript)
39g
g
a
a
a
Caballero, Mateo, Bhadeshia
200 Å
40Low temperature transformation 0.25 T/Tm Fine
microstructure 20-40 nm thick plates Harder
than most martensites (710 HV) Carbide-free Design
ed using theory alone
41Very strong Huge uniform ductility
g
g
a
No deformation No rapid cooling No residual
stresses
a
Cheap Uniform in very large sections
a
200 Å
42Stress / GPa
Velocity km s-1
Hammond and Cross, 2004
43more serious battlefield threats
44ballistic mass efficiency consider unit area of
armour
45(No Transcript)
46(No Transcript)
47(No Transcript)
48Caballero, Mateo, Bhadeshia
49Caballero, Mateo, Bhadeshia
50(No Transcript)
51Sherif, 2005, Ph.D. thesis, Cambridge
52(No Transcript)
53Geometrical percolation threshold of overlapping
ellipsoids
54(No Transcript)
550.4 C 2 Si 3 Mn wt
1 µm
56Very poor toughness!
5750 µm
58Fe-1C-1.5Si wt periodic cracking stress
transfer length
Chatterjee Bhadeshia, 2005
59(No Transcript)
60Carbide-free alloys
wt
61(No Transcript)
62Impact Energy
Charpy impact / J
Temperature / C
Test temperature / C
63(No Transcript)
64kilocycles to Crack Initiation
Yates, Jerath
65 Yates, Jerath
66U.K.