Use of Gaussian Integration (Quadrature) in Stata - PowerPoint PPT Presentation

About This Presentation
Title:

Use of Gaussian Integration (Quadrature) in Stata

Description:

W(x) = x e-x (a, b) = (0, ): Gauss-Laguerre quadrature ... Gauss-Legendre quadrature abcissas and weights 5th order. 17. What is Gaussian quadrature? ... – PowerPoint PPT presentation

Number of Views:339
Avg rating:3.0/5.0
Slides: 42
Provided by: afei
Category:

less

Transcript and Presenter's Notes

Title: Use of Gaussian Integration (Quadrature) in Stata


1
Use of Gaussian Integration (Quadrature) in
Stata Alan H. Feiveson NASA Johnson Space Center
  • What is Gaussian quadrature?
  • Gauss-Legendre case
  • A simple example
  • A more-complicated example
  • Speed issues

1
2
What is Gaussian quadrature ?
Wish to evaluate
  1. Represent H(x) as the product H(x) W(x) f(x)
  2. Use the approximation

where the xj and wj depend on W, a and b.
3
What is Gaussian quadrature ?
  • Choose W(x) such that f(x) is smooth

4
What is Gaussian quadrature ?
  • Choose W(x) such that f(x) is smooth
  • f(x) approximated by linear comb. of orthogonal
    polynomials Pj(x) ?Pi(x)Pj(x)dx 0 (i ? j ).

5
What is Gaussian quadrature ?
  • Choose W(x) such that f(x) is smooth
  • f(x) approximated by linear comb. of orthogonal
    polynomials Pj(x) ?Pi(x)Pj(x)dx 0 (i ? j ).
  • xj are zeros of PM(x).

6
What is Gaussian quadrature ?
  • Choose W(x) such that f(x) is smooth
  • f(x) approximated by linear comb. of orthogonal
    polynomials Pj(x) ?Pi(x)Pj(x)dx 0 (i ? j ).
  • xj are zeros of PM(x).
  • wj is a weight that depends on

7
Some types of Gaussian quadrature
W(x) 1 (a ,b) (any) Gauss-Legendre
quadrature W(x) x?e-x (a, b) (0, ?)
Gauss-Laguerre quadrature W(x)
(a,b) (?, ?) Gauss-Hermite quadrature
8
Example 1 -xtlogit-
Likelihood at each positive outcome is
Estimate ? by maximum likelihood
9
Example 1 -xtlogit-
10
(No Transcript)
11
see p. 139 (-xtlogit-) and pp. 9 14 (-quadchk-)
12
  • Example 2

Wish to evaluate
Let W(x)
Then
(Gauss-Laguerre quadrature)
13
Use of Gaussian Integration (Quadrature) in Stata
  • What is Gaussian quadrature?
  • Gauss-Legendre case
  • A simple example
  • A more-complicated example
  • Speed issues

13
14
Gauss-Legendre Case ( W(x) 1 )
Standard form
General form
15
Gauss-Legendre quadrature abcissas and weights
16
Gauss-Legendre quadrature abcissas and weights
5th order
17
Use of Gaussian Integration (Quadrature) in Stata
  • What is Gaussian quadrature?
  • Gauss-Legendre case
  • A simple example
  • A more-complicated example
  • Speed issues

18
A simple example
A 0.4986500740
19
A simple example
20
A simple example
. range x 0 3 K . gen fx normd(x) . integ fx x
A? 0.4986489713 (K26)
21
Use of Gaussian Integration (Quadrature) in Stata
  • What is Gaussian integration?
  • Gauss-Legendre case
  • A simple example
  • A more-complicated example
  • Speed issues

22
(No Transcript)
23
A more-complicated example (cont.)
Nonlinear regression Model yi F(xi) ei ei
N(0, ?2)
ibeta(p, q, x)
24
(No Transcript)
25
Estimate p and q by nonlinear least squares using
-nl-
26
A more-complicated example (cont.)
27
Incorporation of M-th order Gaussian quadrature
abcissas and weights to data set
Contains data obs 50
vars 14
size 4,800 (99.9 of memory
free) --------------------------------------------
-----------------------------------
storage display value variable name type
format label variable
label --------------------------------------------
----------------------------------- y
float 9.0g x
float 9.0g a
float 9.0g lower limit b
float 9.0g upper
limit u1 double 10.0g
abcissa 1 u2 double 10.0g
abcissa 2 u3 double 10.0g
abcissa 3 u4 double
10.0g abcissa 4 u5
double 10.0g abcissa 5 w1
double 10.0g weight 1 w2
double 10.0g weight
2 w3 double 10.0g
weight 3 w4 double 10.0g
weight 4 w5 double 10.0g
weight 5 ----------------------------
--------------------------------------------------
-
28
(No Transcript)
29
program nlgtest version 8.2 / ----------
Initialization section ------------ / args y x
np a b if "1'" "?" global NP np' /
no. of integration points / global S_1 "P Q
" global P1 / initialization (poor)
/ global Q1 / same as above / /
initialize Gaussian integration variables /
forv i1(1)NP cap gen double lnfi'. /
log f(p,q,u_i) / cap gen double wfi'. /
w_if(p,q,u_i) / / merge Gaussian abcissas
(u_i) and weights (w_i) / run gaussrow _u w
NP a b u exit
30
/ ---------- Iteration section ------------
/ local np NP forv i1(1)np' / loop
over quadrature points / qui replace
lnfi'lngamma(PQ)-lngamma(P)-lngamma(Q)
/ / (P-1)log(ui')(Q-1)log(1-ui') qui
replace wfi'wi'exp(lnfi') cap drop
Eyx egen double Eyxrsum(wf) replace
EyxEyx(b-a)/2 replace 1' Eyx end
31

nl-estimation ( 5 points) . nl gtest y x five a
b (obs 46) Iteration 0 residual SS
1.143306 Iteration 1 residual SS
.2593769 Iteration 2 residual SS
.119276 Iteration 3 residual SS
.1104239 Iteration 4 residual SS
.1103775 Iteration 5 residual SS .1103775
Source SS df MS
Number of obs 46 ----------------------
--------------------- F( 2, 44)
4385.65 Model 22.0034704 2
11.0017352 Prob gt F 0.0000
Residual .110377456 44 .002508579
R-squared 0.9950 -----------------------
-------------------- Adj R-squared
0.9948 Total 22.1138479 46
.480735823 Root MSE .0500857

Res. dev. -146.9522 (gtest) ----------------
--------------------------------------------------
------------ y Coef. Std.
Err. t Pgtt 95 Conf.
Interval ---------------------------------------
--------------------------------------
P 1.939152 .1521358 12.75 0.000
1.632542 2.245761 Q 2.922393
.2346094 12.46 0.000 2.449569
3.395218 -----------------------------------------
------------------------------------- (SEs, P
values, CIs, and correlations are asymptotic
approximations)
32
. nl gtest y x five a b (obs 46) Source
SS df MS Number of
obs 46 ---------------------------------
---------- F( 2, 44) 4385.65
Model 22.0034704 2 11.0017352
Prob gt F 0.0000 Residual
.110377456 44 .002508579 R-squared
0.9950 ------------------------------------
------- Adj R-squared 0.9948
Total 22.1138479 46 .480735823
Root MSE .0500857
Res. dev.
-146.9522 (gtest) --------------------------------
----------------------------------------------
y Coef. Std. Err. t
Pgtt 95 Conf. Interval ------------------
--------------------------------------------------
--------- P 1.939152 .1521358
12.75 0.000 1.632542 2.245761
Q 2.922393 .2346094 12.46 0.000
2.449569 3.395218 -----------------------------
-------------------------------------------------
(SEs, P values, CIs, and correlations are
asymptotic approximations)
33
(No Transcript)
34
Use of Gaussian Integration (Quadrature) in Stata
  • What is Gaussian integration?
  • Gauss-Legendre case
  • A simple example
  • A more-complicated example
  • Speed issues

35
Speed issues
forv i1(1)np' qui replace
lnfi' ... (Q-1)log(1-ui') qui
replace wfi'wi'exp(lnfi') cap
drop Eyx egen double Eyxrsum(wf)
replace EyxEyx(b-a)/2
36
Speed issues
cap gen Eyx. replace Eyx0 forv
i1(1)np' qui replace lnfi' ...
(Q-1)log(1-ui') qui replace
wfi'wi'exp(lnfi') replace
EyxEyxwfI replace
EyxEyx(b-a)/2
  1. sum directly in loop dont use egen-

37
Speed issues
cap gen Eyx. replace Eyx0 forv
i1(1)np' qui replace lnf ...
(Q-1)log(1-ui') qui replace
wfwi'exp(lnf) replace EyxEyxwf
replace EyxEyx(b-a)/2
  1. sum directly in loop dont use egen-
  2. just use one lnf and one wf-variable

38
Speed issues
forv i1(1)np' qui replace lnfi' ...
(Q-1)log(1-ui') qui replace
wfi'wi'exp(lnfi') cap drop Eyx
egen double Eyxrsum(wf) replace
EyxEyx(b-a)/2
39
References
Press, W. H. Flannery, B. P. Teukolsky, S. A.
and Vetterling, W. T. "Gaussian Quadratures and
Orthogonal Polynomials." 4.5 in Numerical
Recipes in FORTRAN The Art of Scientific
Computing, 2nd ed. Cambridge, England Cambridge
University Press, pp. 140-155, 1992 http//www.lib
rary.cornell.edu/nr/bookfpdf/f4-5.pdf
Eric W. Weisstein. "Gaussian Quadrature." From
MathWorld--A Wolfram Web Resource.
http//mathworld.wolfram.com/GaussianQuadrature.h
tml.
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook
of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, 9th printing. New York
Dover, pp. 887-888, 1972.
40
over-dispersed binomial models
ni B(Ni , pi ) pi g(p) (0 lt pi lt 1)
Example logit pi N(?, ?2 ) (-xtlogit-
model) Estimate ?, and ? by ML on obs. of N
and n
41
Possible approaches to incorporation of N-th
order Gaussian quadrature abcissas and weights to
data set
2. Long expand M and add 2 new variables (w
and u)
Write a Comment
User Comments (0)
About PowerShow.com