Title: Global atmospheric circulation
1Global atmospheric circulation
2Poles Cold Decending Air
Tropics Hot Rising Air
3Single circulation cell
Poles Cold Decending Air
Tropics Hot Rising Air
4Coriolis Due to the rotation of the earth
Poles Cold Decending Air
Tropics Hot Rising Air
Rotation
5(No Transcript)
6Coriolis Due to the rotation of the earth
Poles Cold Decending Air
Tropics Hot Rising Air
Rotation
7Coriolis Due to the rotation of the earth
Poles Cold Decending Air
Tropics Hot Rising Air
Rotation
83 circulation cells
Poles Cold Decending Air
Tropics Hot Rising Air
93 circulation cells per hemisphere
Tropics Hot Rising Air
103 circulation cells per hemisphere
Tropics Hadley Cells
NE Trade Winds
ITCZ - doldroms
SE Trade Winds
ITCZ - Inter Tropical Convergence Zone
11Subtropical Jet Stream
Westerlies
Mid-latitudes
Sub-tropical high Horse Lat.
12Cloud Cover
13(No Transcript)
14(No Transcript)
15(No Transcript)
16Surface Pressure
Polar High
Polar Low
Subtropical High
Tropical Low
17Figure 6.13
18General Atmospheric Circulation
Figure 6.13
19Rossby Waves
Undulations in the polar front
Polar Jet Stream
20Jet Streams
Polar Jet stream
Subtropical Jet
21Driving Forces Within the Atmosphere Â
- Gravity
- Pressure Gradient Force Â
- Coriolis Force Â
- Friction Force Â
22Barometer
Instrument used to measure air pressure
Figure 6.2
23Weather Map www.weather.com
24Isobaric pressure maps
- Show the elevation in the atmosphere that is (in
this example) at a pressure of 500 mb.
25Isobaric pressure maps
26(No Transcript)
27Pressure Gradient
Figure 6.7
28(No Transcript)
29Pressure Gradient
Figure 6.7
30Pressure wind
31Geostrophic wind
32Wind movement because of Pressure gradient alone
Map view
33Pressure Coriolis
34Pressure Coriolis Friction
35Pressure Coriolis Friction
Figure 6.8
36Pressure gradient and wind
37Surface vs. high winds
- Surface winds interact with the surface so there
is more friction. - High level winds do not interact as much with the
surface so they tend to be geostrophic winds.
38500 mb Pressure Map (approx.5500m)
Figure 6.10
39Atmospheric Patterns of Motion Â
- Primary High-Pressure and Low-Pressure Areas Â
- Upper Atmospheric Circulation Â
- Local Winds Â
- Monsoonal Winds Â
40Global Barometric Pressure
Figure 6.11
41Global Barometric Pressure
Figure 6.11
42Primary High-Pressure and Low-Pressure Areas
- Equatorial low-pressure trough
- Polar high-pressure cells
- Subtropical high-pressure cells
- Subpolar low-pressure cells
43Equatorial low-pressure trough
- Intertropical convergence zone (ITCZ)
- Trade winds
44Polar high-pressure cells
- Polar easterlies
- Antarctic high
45Subtropical high-pressure cells
- Westerlies
- Bermuda high
- Azores high
- Pacific high
Figure 6.14
46Subpolar low-pressure cells
- Aleutian low
- Icelandic low
- Polar front
47Figure 6.13
48Upper Atmospheric Circulation
49Local Winds
- Land-sea breezes
- Mountain-valley breezes
- Katabatic winds
50Land-Sea Breezes
Figure 6.19
51Monsoonal Winds
Figure 6.21
52Mountain WindsKatabaticWinds
53Mountain Winds KatabaticWinds
54Oceanic Currents
- Surface Currents Â
- Deep Currents Â
55Major Ocean Currents
Figure 6.22
56Deep Currents
Thermohaline circulation A function of both
Temperature and Salinity
Figure 6.23
57Thermo-haline circulation
58Temperature and salinity
59North Atlantic Deepwater Formation
Mediterranean saline water Cooling in the North
Atlantic
http//cleo1.phys.tue.nl/michel/Utrecht/use/thc.h
tml
60Turning off thermohaline circulation Hadley
Centre The figure shows that with increased
surface freshening the meridional overturning
collapses and the sea-surface temperature (SST)
and surface air temperature become significantly
cooler.
61Change in annual temperature 30 years after a
collapse of the thermohaline circulation Figure
courtesy of Michael Vellinga, Hadley Centre.