Chapter 12' Introduction to Numerical Methods - PowerPoint PPT Presentation

1 / 3
About This Presentation
Title:

Chapter 12' Introduction to Numerical Methods

Description:

a 24 bits mantissa can represent approximately 223 = 8388608, ie. about 7 significatant digits ... mmmmm|mmmme|eeeee|ee. mantissa, precision. exponent, range ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 4
Provided by: saga
Category:

less

Transcript and Presenter's Notes

Title: Chapter 12' Introduction to Numerical Methods


1
Chapter 12. Introduction to Numerical Methods
  • Gauss-Jordan elimination method for solving
    system of linear equations
  • portable random number generator

2
  • 12.1 Errors in numerical computations
  • errors intrinsic to the nature of computers
  • errors caused by inappropriate models
  • Intrinsic errors
  • caused by finite precision and range of computers
  • Single-precision real number 32 bits
  • 24 bits mantissa 6 or 7 significant digits
  • 8 bits exponent 10-38 1038
  • Double-precision real number 64 bits
  • 53 bits mantissa 14 or 15 significant digits
  • 11 bits exponent 10-308 10308

12345678.9 will be round-off to 12345680.0 for 7
significant digits ie. round-off error 1.1
3
  • 1.2.3 Type of data stored in memory
  • The "real" or "floating point" data type in a
    type of scientific notation of base 2 system
    (value mantissa 2 exponent)
  • For a real number occupy 32 bits of memory
  • 24 bits for mantissa
  • 8 bits for exponent
  • a 24 bits mantissa can represent approximately
    223 8388608, ie. about 7 significatant digits
  • a 8 bits exponent can represent approximately
    2-128 2127, ie. about 10-38 1038 range
  • Ex. pi.f90

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee
mantissa, precision
exponent, range
Write a Comment
User Comments (0)
About PowerShow.com