Binary Representation of Integers - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Binary Representation of Integers

Description:

The Mantissa bits are 1.100 0000 0000 0000 0000 00002 (recall we automatically ... we need to truncate the number since there are only 23 bits in the mantissa. ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 26
Provided by: adria9
Category:

less

Transcript and Presenter's Notes

Title: Binary Representation of Integers


1
Binary Representation of Integers
2
Integer Binary Numbers
  • Integers are whole numbers (i.e. have no
    fractional part)
  • Ex 10, 6, 1, -33
  • Decimal representation Binary representation Store
    d in memory as
  • (base 10) (base 2)
  • 0 0 0000 0000 0000 0000
  • 1 1 0000 0000 0000 0001
  • 2 10 0000 0000 0000 0010
  • 3 11 0000 0000 0000 0011
  • 4 100 0000 0000 0000 0100
  • 5 101 0000 0000 0000 0101
  • 6 110 0000 0000 0000 0110
  • 7 111 0000 0000 0000 0111
  • 8 1000 0000 0000 0000 1000

3
Integer Binary Numbers
  • Binary integer numbers can be interpreted very
    similar to decimal integer numbers
  • The decimal (base 10) integer number 7341 can be
    interpreted as
  • 7 ? 103 3 ? 102 4 ? 101 1 ? 100 7341
  • The binary (base 2) integer number 1101 can be
    interpreted as
  • 1 ? 23 1 ? 22 0 ? 21 1 ? 20 13

4
Unsigned Integers
  • With a 16 bit word we can represent numbers from
  • 0000 0000 0000 00002 to 1111 1111 1111 11112
  • which corresponds to 0 to 65536.
  • Note that we have assumed that the numbers are
    greater than or equal to zero (i.e. that there
    are no negative numbers). This data type is known
    as unsigned integers.
  • Variable type Memory size in bits Range
  • unsigned short int 16 0 to (216 - 1)
  • unsigned int 32 0 to (232 - 1)
  • unsigned long 32 0 to (232 - 1)

5
1s Complement Representation
  • So how do we represent negative numbers???
  • Conceptually, the easiest way to represent
    negative numbers is to use the most significant
    bit (bit furthest to the left) as a sign bit.
    This is known as the 1s complement
    representation.
  • Decimal representation Binary representation Store
    d in memory as
  • (base 10) (base 2)
  • -3 11 1000 0000 0000 0011
  • -2 10 1000 0000 0000 0010
  • -1 1 1000 0000 0000 0001
  • 0 0 0000 0000 0000 0000
  • 1 1 0000 0000 0000 0001
  • 2 10 0000 0000 0000 0010
  • 3 11 0000 0000 0000 0011

6
2s Complement Representation
  • Despite, its conceptual simplicity the 1s
    complement representation is not widely used.
    Instead, the 2s complement representation is
    often used. To find the 2s complement
    representation, find the positive binary
    representation of the number, invert that
    representation and add 1.
  • Example Find the 2s complement representation
    of -468
  • 468 0000 0001 1101 01002
  • Invert 1111 1110 0010 10112
  • Add 1
    1
  • 2s complement 1111 1110 0010 11002
  • representation of 468

7
2s Complement Representation
  • The utility of the 2s complement representation
    can be seen when we try to add -1 and 1.
  • 1s complement 2s complement
  • 1000 0000 0000 0001 1111 1111 1111 1111
  • 0000 0000 0000 0001 0000 0000 0000
    0001
  • 1000 0000 0000 0010 1 0000 0000
    0000 0000
  • is not correct correct if we simply ignore the
    overflow bit

8
2s Complement Representation
  • Some arithmetic logic units (ALUs) can only
    perform addition. In these cases subtraction can
    be performed by using the ALU to take the 2s
    complement of the second operand (many ALUs can
    perform a bit inversion and increment) and then
    adding the result with the first operand.
  • X - Y X (-Y)

9
Signed Integers
  • With a 16 bit word we can represent positive
    numbers from
  • 0000 0000 0000 00002 to 0111 1111 1111 11112
  • which corresponds to 0 to 32767.
  • With a 16 bit word we can represent negative
    numbers (using 2s complement representation)
    from
  • 1111 1111 1111 11112 to 1000 0000 0000 00002
  • which corresponds to -1 to -32768.
  • Variable type Memory size in bits Range
  • short int 16 -215 to (215 - 1)
  • int 32 -231 to (231 - 1)
  • long 32 -231 to (231 - 1)

10
Binary Representation of Real Numbers
11
Real Numbers
  • Real numbers are the set of rational and
    irrational numbers. These numbers may include a
    fraction component. Computers use a
    floating-point representation for real numbers
  • mantissa ? baseexponent
  • In decimal format we refer to this as scientific
    notation
  • For example 23.25 2.325 ? 101
  • The same idea applies for binary numbers (base 2)
  • 1.0111012 ? 24
  • 1 ? 20 0 ? 2-1 1 ? 2-2 1 ? 2-3 1 ? 2-4
    0 ? 2-5 1 ? 2-6 ? 24
  • 1.453125 ? 24
  • 23.25

12
IEEE Floating Point Representation
  • The IEEE floating point standards are widely
    used.
  • sign bit exponent mantissa
  • Type exp bits mantissa
    bits approximate range significant digits
  • float 8 11 -1038 to 1038 7
  • double 11 53 -10308 to 10308 16
  • long double 15 64 very large! 20

0
011 1111 0
100 0000 0000 0000 0000 0000
13
IEEE Floating Point Representation
  • The binary mantissa should always begin with a 1.
  • 0.00101 ? 22 1.01 ? 25
  • IEEE standards use this knowledge by having an
    implied 1 at the beginning of the mantissa.
  • The sign bit is used to indicate whether to
    entire number is positive (sign-bit 0) or
    negative (sign-bit 1).
  • The exponents values are stored with a bias equal
    to half their possible value. For a 32-bit
    floating point number the exponent value is
    represented by 8-bits. The exponent therefore has
    a maximum value of 255 (1111 11112) so its bias
    it 127.

14
IEEE Floating Point Representation
  • Value (Sign-bit S) (1.Mantissa bits)2 ?
    2(exponent value bias)
  • Example Take the following 32-bit floating point
    number
  • S EEE EEEE E MMM MMMM MMMM MMMM MMMM MMMM
  • 0 011 1111 0 100 0000 0000 0000 0000 0000
  • The value of this floating point number can be
    solved as
  • The sign bit is S 0 so the sign of the number
    is positive
  • The exponent bits are 0111 11102 126
  • Since the exponent is an 8-bit number the bias is
    127
  • The Mantissa bits are 1.100 0000 0000 0000 0000
    00002 (recall we automatically append the 1. to
    the front of the specified Mantissa bits). This
    has a value of
  • 1 ? 20 1 ? 2-1 0 ? 2-2 0 ? 2-3 0 ?
    2-23 1.5
  • The value of the floating point number is
  • () 1.5 ? 2(126 127) 0.75

15
IEEE Floating Point Representation
  • Examples
  • S EEE EEEE E MMM MMMM MMMM MMMM MMMM MMMM
  • 2 0 100 0000 0 000 0000 0000 0000 0000 0000
    1 ? 2(128 - 127)
  • -2 1 100 0000 0 000 0000 0000 0000 0000 0000
    -1 ? 2(128 - 127)
  • 4 0 100 0000 1 000 0000 0000 0000 0000 0000
    1 ? 2(129 - 127)
  • 6 0 100 0000 0 100 0000 0000 0000 0000 0000
    1.5 ? 2(128 - 127)
  • 1 0 011 1111 1 000 0000 0000 0000 0000 0000
    1 ? 2(127 - 127)
  • .75 0 011 1111 0 100 0000 0000 0000 0000 0000
    1.5 ? 2(126 - 127)
  • 0 0 000 0000 0 000 0000 0000 0000 0000 0000
    special case

16
Roundoff Errors
  • Roundoff Error the mantissa only has a finite
    length, which limits the number of significant
    digits that can be stored
  • Example
  • S EEE EEEE E MMM MMMM MMMM MMMM MMMM
    MMMM
  • 0.1 1.6 ? 2(123 - 127) 0 011 1101 1 100
    1100 1100 1100 1100 1101
  • Since 1.6 is represented by a repeating binary
    number 1.1001 1001 1001 . we need to truncate
    the number since there are only 23 bits in the
    mantissa.
  • 0.1 represented in data type double 0.1000 0000
    0000 0000 0555 1331 2
  • Arithmetic overflow too large of a number to
    store
  • Arithmetic underflow too small of a number to
    store

17
Binary Representation of Characters
18
ASCII code
  • Characters use the type char which uses 8 bits of
    memory.
  • The American Standard Code for Information
    Interchange (ASCII) code is the most widely used
    standard.
  • Extended Binary Coded Decimal Interchange Code
    (EBCDIC) is another code, which is probably the
    second most popular code.
  • The type char is used to represent
  • Uppercase letters A through Z
  • Lowercase letters a through z
  • Digits 0 through 9
  • Punctuation, such as colon (), comma (,),
    period(.)
  • Special characters, such as percent sign (),
    octothorp (), ampersand ()
  • Formatting/communication characters, such as
    carriage return, backspace, escape

19
  • Dec Hex Char Dec Hex
    Char Dec Hex Char Dec Hex Char
  • -----------
    ------------ ------------ ------------
  • 0 0 NUL (null) 32 20
    64 40 _at_ 96 60
  • 1 1 SOH (start of heading) 33 21 !
    65 41 A 97 61 a
  • 2 2 STX (start of text) 34 22 "
    66 42 B 98 62 b
  • 3 3 ETX (end of text) 35 23
    67 43 C 99 63 c
  • 4 4 EOT (end of transmission) 36 24
    68 44 D 100 64 d
  • 5 5 ENQ (enquiry) 37 25
    69 45 E 101 65 e
  • 6 6 ACK (acknowledge) 38 26
    70 46 F 102 66 f
  • 7 7 BEL (bell) 39 27 '
    71 47 G 103 67 g
  • 8 8 BS (backspace) 40 28 (
    72 48 H 104 68 h
  • 9 9 TAB (horizontal tab) 41 29 )
    73 49 I 105 69 i
  • 10 A LF (NL line feed, new line) 42 2A
    74 4A J 106 6A j
  • 11 B VT (vertical tab) 43 2B
    75 4B K 107 6B k
  • 12 C FF (NP form feed, new page) 44 2C ,
    76 4C L 108 6C l
  • 13 D CR (carriage return) 45 2D -
    77 4D M 109 6D m
  • 14 E SO (shift out) 46 2E .
    78 4E N 110 6E n
  • 15 F SI (shift in) 47 2F /
    79 4F O 111 6F o
  • 16 10 DLE (data link escape) 48 30 0
    80 50 P 112 70 p

20
Constants
21
Literals
  • The value of a constant does not change
    throughout the entire program (unlike variables,
    whose values can change through the program)
  • Integer literal constants (e.g. 5, 643, -1003)
  • Floating point literal constants (e.g. 9.81, 0.5,
    .5, 3e8)
  • Characters are enclosed in single quotes (e.g.
    M, d, 3, )
  • Control characters are specified using a backward
    slash (e.g. tab \t, newline \n, Backward
    slash \\)
  • Strings, which are a sequence of characters, are
    enclosed in double quotes (e.g. Hello world,
    First line\nSecond line)

22
Named Constants
  • Provides a label to fixed values making programs
    easier to understand (avoids magical numbers)
    and easier to change (modify value in one place
    instead of many)
  • Syntax
  • const ltvariable typegt ltvariable namegt ltvaluegt
  • By convention constants have variables names that
    are all uppercase.
  • Example
  • const double SPEED_OF_LIGHT 2.997925e8

23
Problem 1 Integers
  • Confirm the 16-bit 1s complement and 2s
    complement representations of the following
    numbers by converting them yourself.
  • Decimal Binary 1s complement Binary 2s
    complement
  • 8 0000 0000 0000 1000 0000 0000 0000 1000
  • 8636 0010 0001 1011 1100 0010 0001 1011 1100
  • -2 1000 0000 0000 0010 1111 1111 1111 1110
  • -403 1000 0001 1001 0011 1111 1110 0110 1101

24
Problem 2 Integers
  • Perform the following addition using the 16-bit
    2s complement binary representations and convert
    the result back into the decimal notation to
    confirm the correctness of the result.
  • 8 8636
  • 8 (-2)
  • -403 8636
  • -2 (-403)

25
Problem 3 Floating Point
  • Show that the binary representation for the
    floating point numbers are equal to the
    corresponding decimal values.
  • S EEE EEEE E MMM MMMM MMMM MMMM MMMM MMMM
  • 0.5625 0 011 1111 0 001 0000 0000 0000 0000
    0000
  • 0.6445312500 0 011 1111 0 010 0101 0000 0000
    0000 0000
  • -0.1455078125 1 011 1110 0 001 0101 0000 0000
    0000 0000
  • 127.8544921875 0 100 0010 1 111 1111 1011 0101
    1000 0000
Write a Comment
User Comments (0)
About PowerShow.com