EE 7730 - PowerPoint PPT Presentation

About This Presentation
Title:

EE 7730

Description:

EE 7730. 2D Discrete Fourier Transform (DFT) Bahadir K. Gunturk. EE 7730 ... Dfg = fft (Conv_f_g,4); figure; plot(abs(Dfg)); Df1 = fft (f,3); Dg1 = fft (g,3) ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 43
Provided by: ece5
Learn more at: https://www.ece.lsu.edu
Category:
Tags: dfg

less

Transcript and Presenter's Notes

Title: EE 7730


1
EE 7730
  • 2D Discrete Fourier Transform (DFT)

2
2D Discrete Fourier Transform
  • 2D Fourier Transform
  • 2D Discrete Fourier Transform (DFT)

2D DFT is a sampled version of 2D FT.
3
2D Discrete Fourier Transform
  • 2D Discrete Fourier Transform (DFT)

where and
  • Inverse DFT

4
2D Discrete Fourier Transform
  • It is also possible to define DFT as follows

where and
  • Inverse DFT

5
2D Discrete Fourier Transform
  • Or, as follows

where and
  • Inverse DFT

6
2D Discrete Fourier Transform
7
2D Discrete Fourier Transform
8
2D Discrete Fourier Transform
9
2D Discrete Fourier Transform
10
Periodicity
  • M,N point DFT is periodic with period M,N

1
11
Periodicity
  • M,N point DFT is periodic with period M,N

1
12
Convolution
  • Be careful about the convolution property!

LengthPQ-1
LengthQ
LengthP
For the convolution property to hold, M must be
greater than or equal to PQ-1.
13
Convolution
  • Zero padding

4-point DFT (M4)
14
DFT in MATLAB
  • Let f be a 2D image with dimension M,N, then
    its 2D DFT can be computed as follows
  • Df fft2(f,M,N)
  • fft2 puts the zero-frequency component at the
    top-left corner.
  • fftshift shifts the zero-frequency component to
    the center. (Useful for visualization.)
  • Example
  • f imread(saturn.tif) f double(f)
  • Df fft2(f,size(f,1), size(f,2))
  • figure imshow(log(abs(Df)), )
  • Df2 fftshift(Df)
  • figure imshow(log(abs(Df2)), )

15
DFT in MATLAB
f
Df fft2(f)
After fftshift
16
DFT in MATLAB
  • Lets test convolution property
  • f 1 1
  • g 2 2 2
  • Conv_f_g conv2(f,g) figure plot(Conv_f_g)
  • Dfg fft (Conv_f_g,4) figure plot(abs(Dfg))
  • Df1 fft (f,3)
  • Dg1 fft (g,3)
  • Dfg1 Df1.Dg1 figure plot(abs(Dfg1))
  • Df2 fft (f,4)
  • Dg2 fft (g,4)
  • Dfg2 Df2.Dg2 figure plot(abs(Dfg2))
  • Inv_Dfg2 ifft(Dfg2,4)
  • figure plot(Inv_Dfg2)

17
DFT in MATLAB
  • Increasing the DFT size
  • f 1 1
  • g 2 2 2
  • Df1 fft (f,4)
  • Dg1 fft (g,4)
  • Dfg1 Df1.Dg1 figure plot(abs(Dfg1))
  • Df2 fft (f,20)
  • Dg2 fft (g,20)
  • Dfg2 Df2.Dg2 figure plot(abs(Dfg2))
  • Df3 fft (f,100)
  • Dg3 fft (g,100)
  • Dfg3 Df3.Dg3 figure plot(abs(Dfg3))

18
DFT in MATLAB
  • Scale axis and use fftshift
  • f 1 1
  • g 2 2 2
  • Df1 fft (f,100)
  • Dg1 fft (g,100)
  • Dfg1 Df1.Dg1
  • t linspace(0,1,length(Dfg1))
  • figure plot(t, abs(Dfg1))
  • Dfg1_shifted fftshift(Dfg1)
  • t2 linspace(-0.5, 0.5, length(Dfg1_shifted))
  • figure plot(t, abs(Dfg1_shifted))

19
Example
20
Example
21
DFT-Domain Filtering
  • a imread(cameraman.tif')
  • Da fft2(a)
  • Da fftshift(Da)
  • figure imshow(log(abs(Da)),)
  • H zeros(256,256)
  • H(128-2012820,128-2012820) 1
  • figure imshow(H,)
  • Db Da.H
  • Db fftshift(Db)
  • b real(ifft2(Db))
  • figure imshow(b,)

H
Frequency domain
Spatial domain
22
Low-Pass Filtering
81x81
61x61
121x121
23
Low-Pass Filtering
h


DFT(h)
24
High-Pass Filtering
h


DFT(h)
25
High-Pass Filtering
High-pass filter
26
Anti-Aliasing
aimread(barbara.tif)
27
Anti-Aliasing
aimread(barbara.tif) bimresize(a,0.25) cimr
esize(b,4)
28
Anti-Aliasing
aimread(barbara.tif) bimresize(a,0.25) cimr
esize(b,4) Hzeros(512,512) H(256-6425664,
256-6425664)1 Dafft2(a) Dafftshift(Da) Dd
Da.H Ddfftshift(Dd) dreal(ifft2(Dd))
29
Noise Removal
  • For natural images, the energy is concentrated
    mostly in the low-frequency components.

Einstein
DFT of Einstein
Profile along the red line
Signal vs Noise
Noise40rand(256,256)
30
Noise Removal
  • At high-frequencies, noise power is comparable to
    the signal power.

Signal vs Noise
  • Low-pass filtering increases signal to noise
    ratio.

31
Appendix
32
Appendix Impulse Train
  • The Fourier Transform of a comb function is

33
Impulse Train (contd)
  • The Fourier Transform of a comb function is

(Fourier Trans. of 1)
?
34
Impulse Train (contd)
  • Proof

35
Appendix Downsampling
  • Question What is the Fourier Transform of
    ?

36
Downsampling
  • Let

Using the multiplication property
37
Downsampling
where
38
Example
39
Example
?
40
Downsampling
41
Example
42
Example
No aliasing if
Write a Comment
User Comments (0)
About PowerShow.com