A Counterexample to Strong Parallel Repetition - PowerPoint PPT Presentation

About This Presentation
Title:

A Counterexample to Strong Parallel Repetition

Description:

Our Result: G s.t.: Val(G) = 1- , Applications of Parallel Repetition: ... ValQ(G) Val(G) ValQ(G) = value when the provers. share entangled quantum states ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 32
Provided by: raz66
Category:

less

Transcript and Presenter's Notes

Title: A Counterexample to Strong Parallel Repetition


1
A Counterexample to Strong Parallel Repetition
  • Ran Raz
  • Weizmann Institute

2
  • Two Prover Games
  • Player A gets x
  • Player B gets y
  • (x,y) 2R publicly known distribution
  • Player A answers aA(x)
  • Player B answers bB(y)
  • They win if V(x,y,a,b)1
  • (V is a publicly known function)
  • Val(G) MaxA,B Prx,y V(x,y,a,b)1

3
  • Example
  • Player A gets x 2R 1,2
  • Player B gets y 2R 3,4
  • A answers aA(x) 2 1,2,3,4
  • B answers bB(y) 2 1,2,3,4
  • They win if abx or aby
  • Val(G) ½
  • (protocol ax, b 2R 1,2)
  • (alternatively by, a 2R 3,4)

4
  • Parallel Repetition
  • A gets x (x1,..,xn)
  • B gets y (y1,..,yn)
  • (xi,yi) 2R the original distribution
  • A answers a(a1,..,an) A(x)
  • B answers b(b1,..,bn) B(y)
  • V(x,y,a,b) 1 iff 8i V(xi,yi,ai,bi)1
  • Val(Gn) MaxA,B Prx,y V(x,y,a,b)1

5
  • Parallel Repetition
  • A gets x (x1,..,xn)
  • B gets y (y1,..,yn)
  • (xi,yi) 2R the original distribution
  • A answers a(a1,..,an) A(x)
  • B answers b(b1,..,bn) B(y)
  • V(x,y,a,b) 1 iff 8i V(xi,yi,ai,bi)1
  • Val(Gn) MaxA,B Prx,y V(x,y,a,b)1
  • Val(G) Val(Gn) Val(G)n
  • Is Val(Gn) Val(G)n ?

6
  • Example
  • A gets x1,x2 2R 1,2
  • B gets y1,y2 2R 3,4
  • A answers a1,a2 2 1,2,3,4
  • B answers b1,b2 2 1,2,3,4
  • They win if 8i aibixi or aibiyi
  • Val(G2) ½ Val(G)
  • By a1x1, b1y2-2, a2x12, b2y2
  • (they win iff x1y2-2)

7
  • Parallel Repetition Theorem R95
  • 8G Val(G) lt 1 ) 9 w lt 1
  • (s length of answers in G)
  • Assume that Val(G) 1-?
  • What can we say about w ?

8
  • Parallel Repetition Theorem
  • Val(G) 1-? , (? lt ½) )
  • R-95
  • Hol-06
  • For unique and projection games
  • Rao-07
  • (s length of answers in G)

9
  • Strong Parallel Repetition Problem
  • Is the following true ?
  • Val(G) 1-? , (? lt ½) )
  • (for any game or for interesting special cases)
  • Our Result G s.t. Val(G) 1-?,

10
  • Applications of Parallel Repetition
  • 1) Communication Complexity direct product
    results PRW
  • 2) Geometry understanding foams, tiling the
    space Rn FKO
  • 3) Quantum Computation strong EPR paradoxes
    CHTW
  • 4) Hardness of Approximation BGS,Has,Fei,K
    ho,...

11
  • EPR Paradox 9 G s.t.
  • ValQ(G) gt Val(G)
  • ValQ(G) value when the provers
  • share entangled quantum states
  • CHTW 04 9 G s.t.
  • ValQ(G) 1 and Val(G) 1-?
  • (for some constant ? gt 0)
  • Using Parallel Repetition 9 G s.t.
  • ValQ(G) 1 and Val(G) ?
  • (for any constant ? gt 0)

12
  • PCP Theorem BFL,FGLSS,AS,ALMSS
  • Given G (with constant answer size)
  • It is NP hard to distinguish between
  • Val(G) 1 and Val(G) 1-?
  • (for some constant ? gt 0)
  • Using Parallel Repetition
  • It is NP hard to distinguish between
  • Val(G) 1 and Val(G) ?
  • (for any constant ? gt 0)

13
  • Unique Games (UG)
  • G is a UG if V(x,y,a,b) satisfies
  • 8 x,y,a 9 unique b, V(x,y,a,b) 1
  • 8 x,y,b 9 unique a, V(x,y,a,b) 1
  • Unique Games Conjecture Khot
  • 8 constant ? gt 0, 9 constant s, s.t.
  • Given a UG G (with answer size s)
  • It is NP hard to distinguish between
  • Val(G) 1-? and Val(G) ?

14
  • UGC and Max-Cut KKMO
  • UGC ) 8 ? gt 0, given a graph G,
  • It is NP hard to distinguish between
  • Max-Cut(G) 1-?2 and
  • Max-Cut(G) 1-2?/p
  • Using Strong Parallel Repetition
  • UGC , 8 ? gt 0, given a graph G,
  • It is NP hard to distinguish between
  • Max-Cut(G) 1-?2 and
  • Max-Cut(G) 1-2?/p

15
  • Odd Cycle Game CHTW,FKO
  • A gets x 2R 1,..,m (m is odd)
  • B gets y 2R x,x-1,x1 (mod m)
  • A answers aA(x) 2 0,1
  • B answers bB(y) 2 0,1
  • They win if xy , ab

16
  • Odd Cycle Game CHTW,FKO
  • A gets x 2R 1,..,m (m is odd)
  • B gets y 2R x,x-1,x1 (mod m)
  • A answers aA(x) 2 0,1
  • B answers bB(y) 2 0,1
  • They win if xy , ab

1
0
0
1
1
17
  • Parallel Repetition of OCG
  • A gets x1,..,xn 2R 1,..,m
  • B gets y1,..,yn 2R 1,..,m
  • 8 i yi 2R xi,xi-1,xi1 (mod m)
  • A answers a1,..,an 2 0,1
  • B answers b1,..,bn 2 0,1
  • They win if 8 i xiyi , aibi

18
  • Parallel Repetition of OCG
  • A gets x1,..,xn 2R 1,..,m
  • B gets y1,..,yn 2R 1,..,m
  • 8 i yi 2R xi,xi-1,xi1 (mod m)
  • A answers a1,..,an 2 0,1
  • B answers b1,..,bn 2 0,1
  • They win if 8 i xiyi , aibi
  • Motivation FKO Max-Cut vs. UGC,
  • Understanding foams, Tiling the space

19
  • Our Results
  • (match an upper bound of FKO)
  • For n ¼ m2,
  • For n ?(m2),

20
  • Odd Cycle Game
  • A gets x, B gets y. If they can
  • agree on an edge e that doesnt
  • touch x,y, they win !

0
1
1
0
1
0
1
0
1
21
  • Parallel Repetition of OCG
  • A gets x1,..,xn, B gets y1,..,yn.
  • If they can agree on edges e1,..,en
  • that dont touch x1,..,xn, y1,..,yn,
  • they win !

22
  • Holensteins Lemma B,KT
  • A has f W ! R, B has g W ! R,
  • s.t., f-g1 O(?)
  • Using shared randomness, A can
  • choose u 2f W, and B v 2g W,
  • s.t. Probuv 1-O(?)

23
  • Distribution P
  • m2k1, P-k,k ! R (symmetric)
  • 1) P(i) ¼ (k1-i)2 / m3
  • 2) P(0) (1/m)
  • 3) P(k) P(-k) (1/m3) (negligible)

24
  • Distribution P
  • m2k1, P-k,k ! R (symmetric)
  • 1) P(0) (1/m)
  • 2) P(k) P(-k) (1/m3) (negligible)
  • 3)

25
  • Distributions on the Odd Cycle
  • E Edges of the odd cycle.
  • Given x, A defines fx E ! R fxP,
  • concentrated on the edge opposite to x
  • Given y, B defines gy E ! R gyP,
  • concentrated on the edge opposite to y
  • fx ¼ gy (since x,y are adjacent)
  • fx-gy1 O(1/m)

26
  • Holensteins Lemma
  • A has f W ! R, B has g W ! R,
  • s.t., f-g1 O(?)
  • Using shared randomness, A can
  • choose u 2f W, and B v 2g W,
  • s.t. Probuv 1-O(?)
  • OCG Using fx,gy, A,B can agree on
  • an edge e that doesnt touch x,y,
  • with probability 1-O(1/m)

27
  • Our Protocol
  • Given x(x1,..,xn), A defines fx En ! R,
  • Given y(y1,..,yn), B defines gy En ! R,
  • Lemma
  • Using Holensteins lemma, A,B agree on
  • edges e1,..,en that dont touch x1,..,xn,
  • y1,..,yn, with probability

28
  • Proof Idea
  • Typically in coordinates
  • and in
  • coordinates
  • n/3 coordinates cancel each other. We
  • are left with distance

29
  • Proof Idea
  • Hence, typically

30
  • Follow Up Works
  • 1) Generalizations to unique games
  • BHHRRS Protocols for parallel
  • repetition of any unique game
  • 2) Tiling the space Rn KORW,AK
  • Rn can be tiled (with translations in Zn),
  • by objects with surface area similar to
  • the one of the sphere (with volume 1)

31
The End
Write a Comment
User Comments (0)
About PowerShow.com