Pipeline aproach used for dynamic mesh comparison - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Pipeline aproach used for dynamic mesh comparison

Description:

Pipeline aproach used for dynamic mesh comparison. Milan Frank. Libor V a. V clav Skala. Centre of Computer Graphics and Data Visualisation, University of West ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 18
Provided by: Lib92
Category:

less

Transcript and Presenter's Notes

Title: Pipeline aproach used for dynamic mesh comparison


1
Pipeline aproach used for dynamic mesh comparison
  • Milan Frank
  • Libor Váa
  • Václav Skala

2
Outline
  • pipeline environment MVE2
  • what is it
  • why is it worth using
  • dynamic mesh comparison
  • what do we want
  • how do we do it
  • how do we benefit from MVE2

3
Pipeline environment
  • Modular Visualisation Environment
  • general modular environment
  • algorithm decomposition
  • modules
  • connections
  • maps

4
MVE2
  • front-ends
  • GUI (Map editor)
  • command line (runmap.exe)
  • map generality features
  • supports cycles
  • supports submaps, subbranches
  • supports multiple execution

5
MVE2 features
  • flexibility
  • user data structures
  • advanced execution features
  • .NET
  • language freedom
  • (C, C, Object Pascal, )
  • .NET Framework
  • XML, collections, WinForms,

6
(No Transcript)
7
Simplicity
using System using Zcu.Mve.Core using
Zcu.Mve.Numerics namespace Examples class
SimpleSineModule public SimpleSine()
AddInPort("Argument", typeof(Scalar))
AddOutPort("Value", typeof(Scalar))
public override void Execute()
Scalar input (Scalar)GetInput("Argumen
t") Scalar result
Math.Sin(input) SetOutput("Value",
result)
8
Simplicity2
  • private int multiplier
  • public int Multiplier
  • get return (multiplier)
  • set multiplier value

9
Dynamic mesh comparison
  • surface animation
  • constant connectivity only
  • why compare
  • to evaluate distortion caused by processing
    (decimation)
  • to clasify environment
  • to learn/teach (surgery, dance, )

10
Hausdorff distance
  • from static mesh comparison
  • maximum of minimal distances
  • For each point of one mesh find the closest
    point on the other mesh. Note the bigest distance
    you find (in both directions)
  • do the same for dynamic mesh

11
Hausdorff distance
  • dynamic 3D mesh static 4D mesh
  • a triangle in time t1 and t2 forms a prism in 4D
  • divide each prism into 3 4D tetrahedra
  • carefully
  • point-to-tetrahedron distance (in 4D)
  • point-to-mesh distance
  • optimizations

12
Problems with Hausdorff distance
  • time - space relation
  • perofrmance
  • quadratic
  • n triangles frames 3
  • speedup
  • spatial subdivision
  • preprocessing
  • optimised testing

13
MVE2 benefits
  • reuse our code
  • point to tetrahedron test module
  • point to mesh test module
  • mesh distance module
  • use modules from MVE2
  • load meshes
  • postprocess results
  • display results

14
(No Transcript)
15
(No Transcript)
16
Future work
  • more modules
  • automatic parallelisation
  • subjective perception experiments
  • constant connectivity mesh decimation

17
  • Thank you
  • http//herakles.zcu.cz/research/mve2
Write a Comment
User Comments (0)
About PowerShow.com