The Role of Chemistry in Innovation Chemistry for Future Energy Supply

presentation player overlay
1 / 29
About This Presentation
Transcript and Presenter's Notes

Title: The Role of Chemistry in Innovation Chemistry for Future Energy Supply


1
The Role of Chemistry in InnovationChemistry
for Future Energy Supply
  • K. Wagemann, DECHEMA e.V.

2
Two hot topics in the present political
discussions
  • Energy Supply
  • Climate Change
  • (Adaptation Mitigation)

3
Energy in the SusChem Implementation Action Plan
  • Energy
  • Alternative energy sources
  • Photovoltaic
  • Fuels production from biomass
  • Fuel cells
  • (Metal)nanoparticles as fuel
  • Wind power
  • Energy conservation
  • Efficient lighting
  • Insulation
  • Energy storage
  • Batteries
  • Gas storage
  • Supercapacitors

4
Energy in the SusChem-Deutschland IAP
  • Photovoltaics
  • Fuel cells
  • Efficient use of energy - inorganic LEDs
  • Efficient use of waste heat from industrial
    plants
  • Li-Ion batteries for stationary and mobile
    applications
  • Super caps
  • H2 production and storage
  • Exhaust gas treatment and catalysis
  • Light weight materials
  • Biobutanol

5
Chemistry and Energy
  • German Coordination Group Chemical aspects of
    energy research
  • DECHEMA - Gesellschaft für Chemische Technik und
    Biotechnologie e.V.
  • DBG Deutsche Bunsen Gesellschaft für
    Physikalische Chemie e.V
  • GDCh Gesellschaft Deutscher Chemiker e.V.
  • DGMK Deutsche Wissenschaftliche
    Gesellschaftfür Erdöl, Erdgas und Kohle e.V.
  • VDI-GVC VDI-Gesellschaft Verfahrenstechnikund
    Chemieingenieurwesen
  • VCI Verband der Chemischen Industrie e.V.

6
Position Paper
7
Position PaperThesis
  • The demand for chemical solutions will increase
  • Fuel cells Catalysts, Electrolytes, Membranes
  • Solar cells Organic, Polymeric, Easy to Process
    Systems
  • Batteries Electrodes, Electrolytes
  • Thermoelectrica Nanostructured Materials
  • CO2-Sequestration Absorption, Chemical
    Conversion
  • Heavy Oils and Coal (and Biomass) Conversion to
    Fuels

8
The role of chemistry
Energy Supply
Fuels Bioenergy Photovoltaics Fuel
cells Thermoelectrics Collectors H2-Production
Energy storage
Mobile batteries Stationary batteries Supercaps Ch
emicals
CO2-Utilisation
OLEDs Superconductors Lightweight
materials Thermal insulation
Catalysis Microreaction techn. New reaction
media Process integration
Energy efficientproductionprocesses
Efficient use of energy
9
Chemistry has a role for the future energy supply!
10
Backup
Backup
11
Chemistry-related CO2-Emissions
Numbers of 2004, Source Ministry of Economics
and Technology
12
Production of Hydrogen
  • Alternatives
  • Direct thermal water splitting (without catalyst
    T gt 2.500C)
  • catalytic
  • redoxcatalytic
  • Photocatalytic water splitting at solid surfaces
  • Biomimetic photosystems in liquid phase
    (Ru-Systems)
  • Biohydrogen

13
Photovoltaics
  • Thin film solar cells (a-Si, µCSi, CdTe ...)
  • Multibandgap-cells
  • Alternatives
  • Organic semiconductor systems
  • Photoelectrochemical cells(Grätzel-Cells)

14
Materials for Collectors
  • Coatings today
  • Black Chromium
  • Black Nickel
  • Efficient, but processing (galvanisation) not
    environmentally benign
  • Coatings Future
  • Al2N3
  • Carbides
  • TiNOx
  • Better efficiency (absorption and reflection)
  • but processing costs high

15
Thermoelectrical Devices
  • Principle
  • Materials Bi2Te3, Bi2Se3, Sb2Te (RT) / PbTe-,
    SiGe-Alloys (550 800 K)
  • Energy Source In general lost heat
  • Applications
  • Energy independent micro sensors (self-powered
    sensors)
  • self-powered micro-devices
  • Auxiliary power systems in automotives
  • Cooling of Photovoltaic devices

16
Thermoelectrical Devices
  • Future Higher Efficiency using nanostructured
    materials

17
CO2-Sequestration Utilisation
  • Carbon Capture and Storage Technologies

18
CO2-Sequestration
  • Research Topics (Chemistry related)
  • Coal Gasification
  • CO2-Capture
  • Absorption
  • Membranes
  • Materials / Corrosion(CO2(l) / H2O / High Salt
    Concentration)

19
CO2-Utilisation
  • Energy Storage Systems
  • Dry Reforming
  • CO2 as C1-Building Block
  • Artificial Photosynthesis
  • MicroalgaeCultivation
  • Better Plants

20
CO2-Utilisation
  • Energy Storage SystemsCO2 H2 ? CH3OH H2O
  • NEDO-Project, Japan (since early 90ies)

ZnCrO-catalyst
21
CO2-UtilisationSteamless Carbon Dioxide
Reforming (Dry Reforming)
  • CO2 CH4 ? 2CO 2H2
  • Idea Exploitation of remote gas fields (stranded
    gas)
  • Discussion Platforms
  • Eranet Chemistry
  • SusChem-D September Workshop

22
CO2-UtilisationArtificial Photosynthesis
23
CO2-UtilisationArtificial Photosynthesis
  • Light harvesting supramolecular components
    (Balzani, Bologna)

24
CO2-UtilisationArtificial Photosynthesis
  • General Problems
  • Thermal Stability
  • Photo(oxidative)-Stability
  • Light-Harvesting
  • European Network Solar-H (http//www.fotomol.uu.s
    e/Forskning/Biomimetics/solarh)

25
CO2-UtilisationCO2 as C1 Building Block
  • Problem Inertness

CO2
O
O
C
C
OR1
R2O
OR1
R2
Carbonates
Ester
R3
R4
C
OR2
R1O
Acetales
26
CO2-UtilisationCO2 as C1 Building Block
  • Activation by Carboanhydrase
  • CO2 H2O ? HCO3- H

Aktive Center of Carboanhydrase
27
CO2-UtilisationActivation of CO2
  • Active Species Carbamate
  • M. Antonietti, Angew. Chemie 2007, 119, 2773
    ff

28
CO2-Utilisation Biorefineries
  • Bioethanol/BioDiesel (1st Generation)
  • Biofuels 2nd Generation
  • BTL (? FT-Catalysts)
  • Lignocellulose ? Ethanol
  • Biogas
  • Chemical Building Blocks

29
CO2-Utilisation Biogas
One Alternative Zinkoxid H2SZnO ?
H2OZnS 200-400 C (!) ? H2S-content ppb
Write a Comment
User Comments (0)
About PowerShow.com