SOMs for time series - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

SOMs for time series

Description:

... time series of frequencies ... written language: time series of symbols ... Note: ? determines the representation. a determines the network dynamic/stability ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 34
Provided by: Barb398
Category:
Tags: music | note | series | soms | symbols | time

less

Transcript and Presenter's Notes

Title: SOMs for time series


1
SOMs for time series
2
Time series ...
3
try to learn French
design the next research project
be very polite
organize everything
enjoy the excellent food
enjoy the nice company
enjoy yourself
go asleep
drink something
4
Time series
  • time series of red wine, white wine, sake,
    coke, green tea, water
  • spoken language time series of frequencies
  • written language time series of symbols
  • sensor streams
  • music
  • motor functions
  • heart beat and other biological time series
  • metabolic reactions
  • DNA sequences

Vive la France!
5
SOM for time series...
6
SOM for time series
  • Self-organizing map (SOM) Kohonen
  • very popular unsupervised self-organizing neural
    method for data mining and visualization

network given by prototypes wj ? Rn in a lattice
mapping Rn?x ? position j in the lattice for
which x-wj minimal
Hebbian learning based on examples xi and
neighborhood cooperation
i.e. choose xi and adapt all wj wj wj
?nhd(j,j0)(xi-wj)
7
SOM for time series
  • time window technique Martinetz et al., Simon et
    al.,
  • specific metrics for sequences Günter/Bunke,
    Kohonen, Somervuo, Yin,
  • statistical models Bishop et al., Tino et al.,
    Swarup et al.,
  • temporal aspects by spatial representation
    Euliano/Principe, James/Miikkulainen, Kohonen,
    Schulz/Reggia, Wiemer,
  • recurrent processing of time series

8
SOM for time series
  • Temporal Kohonen Map Chappell/Taylor,93

x1,x2,x3,x4,,xt,
d(xt,wi) xt-wi ad(xt-1,wi)
training wi ? xt
Recurrent SOM Koskela/Varsta/Heikkonen,98
d(xt,wi) yt where yt (xt-wi) ayt-1
training wi ? yt
9
SOM for time series
  • TKM/RSOM compute a leaky average of time series
  • It is not clear how they can differentiate
    various contexts
  • no explicit context!

is the same as
10
Merge SOM ...
11
Merge SOM
  • Idea explicit notion of context

(wj,cj) in Rnxn
wj represents the current entry xt cj
represents the context the content of the
winner of the last step
d(xt,wj) axt-wj (1-a)Ct-cj where Ct
?wI(t-1) (1-?)cI(t-1), I(t-1) winner in step
t-1
merge
12
Merge SOM
  • Example 42 ? 33? 33? 34

C1 (42 50)/2 46
C2 (3345)/2 39
C3 (3338)/2 35.5
13
Merge SOM
  • Training
  • MSOM wj wj ?nhd(j,j0)(xt-wj)
  • cj cj
    ?nhd(j,j0)(Ct-cj)
  • euclidean or alternative (e.g. hyperbolic)
    lattices
  • MNG wj wj ?rk(j,xt,w)(xt-wj)
  • cj wj
    ?rk(j,xt,w)(Ct-cj)

14
Merge SOM
  • Training choice of merge parameters
  • Ct ?wI(t-1) (1-?)cI(t-1)
  • determines the influence of the history on the
    interior context representation
  • ? 0.5 is often a good choice (balanced history)
  • d(xt,wj) axt-wj (1-a)Ct-cj
  • determines the influence of the history on the
    winner
  • an annealing strategy starting from a 1 driven
    by the map entropy provides a good strategy
  • Note
  • ? determines the representation
  • a determines the network dynamic/stability
  • they can be controlled separately!

15
Merge SOM
  • Experiment
  • speaker identification, Japanese vowel ae
  • 9 speakers, 30 articulations per speaker in
    training set
  • separate test set
  • http//kdd.ics.uci.edu/databases/JapaneseVowels/Ja
    paneseVowels.html

time
12-dim. cepstrum
16
Merge SOM
  • MNG with posterior labeling
  • ? 0.5, a 0.99?0.63, ? 0.3
  • 150 neurons
  • 0 training error
  • 2.7 test error
  • 1000 neurons
  • 0 training error
  • 1.6 test error
  • rule based 5.9, HMM 3.8 Kudo et al.

17
Merge SOM
  • Experiment
  • Reber grammar
  • 3106 input vectors for training
  • 106 vectors for testing
  • MNG
  • 617 neurons, ? 0.5, a 1?0.57
  • evaluation by the test data
  • attach the longest unique sequence to each winner
  • 428 distinct words
  • average length 8.902
  • reconstruction from the map
  • backtracking of the best matching predecessor
  • triplets only valid Reber words
  • unlimited average 13.78
  • TVPXTTVVEBTSXXTVPSEBPVPXTVVEBPVVEB

BTXXVPXVPXVPSE
BTXXVPXVPSE
(W,C)
18
Merge SOM
  • Experiment
  • classification of donor sites for C.elegans
  • 5 settings with 10000 training data, 10000 test
    data, 50 nucleotides TCGA embedded in 3 dim, 38
    donor Sonnenburg, Rätsch et al.
  • MNG with posterior labeling
  • 512 neurons, ?0.25, ?0.075, a 0.999 ?
    0.4,0.7
  • 14.060.66 training error, 14.260.39 test
    error
  • sparse representation 512 6 dim

19
Merge SOM
  • Theory (training)
  • Assume
  • a SOM with merge context is given (no
    neighborhood)
  • a sequence x0, x1, x2, x3, is given
  • enough neurons are available
  • Then
  • the optimum weight/context pair for xt is
  • w xt, c ?i0..t-1
    ?(1-?)t-i-1xi
  • Hebbian training converges to this setting as a
    stable fixed point

20
Merge SOM
  • MSOM
  • w xt, c ?i0..t-1 ?(1-?)t-i-1xi
  • stable fixed point of Hebbian training
  • dynamics driven by entropy-controlled parameter a
  • Compare to TKM/RSOM
  • optimum weights are w ?i0..t (1-a)ixt-i /
    ?i0..t (1-a)i
  • but no fixed point for TKM
  • fixed point for RSOM, but no separate control of
    the dynamic is possible

21
Merge SOM
  • Theory (capacity)
  • MSOM can simulate finite automata
  • TKM/RSOM cannot
  • ? MSOM is strictly more powerful than TKM/RSOM!

state
input
state
d
state
input (1,0,0,0)
22
General recursive SOM ...
23
General recursive SOM
xt,xt-1,xt-2,,x0
xt-1,xt-2,,x0
xt
(w,c)
xt w2
Ct - c2
The methods differ in the choice of context!
Ct
Hebbian learning w ? xt c ? Ct
24
General recursive SOM
xt,xt-1,xt-2,,x0
(w,c)
xt w2
Ct - c2
xt
MSOM Ct merged content of the winner in the
previous time step TKM/RSOM Ct activation of
the current neuron (implicit c)
Ct
xt-1,xt-2,,x0
25
General recursive SOM
  • MSOM
  • Ct merged content of the winner in the
    previous time step
  • TKM/RSOM
  • Ct activation of the current neuron
    (implicit c)
  • Recursive SOM (RecSOM) Voegtlin
  • Ct exponential transformation of the
    activation of all neurons
  • (exp(-d(xt-1,w1)),,exp(-d(xt-1,wN)))
  • Feedback SOM (FSOM) Horio/Yamakawa
  • Ct leaky integrated activation of all
    neurons
  • (d(xt-1,w1),, d(xt-1,wN)) ?Ct-1
  • SOM for structured data (SOMSD)
    Hagenbuchner/Sperduti/Tsoi
  • Ct index of the winner in the previous
    step
  • Supervised recurrent networks
  • Ct sgd(activation), metric as dot product

26
General recursive SOM
for normalized or WTA semilinear context
27
General recursive SOM
  • Experiment
  • Mackey-Glass time series
  • 100 neurons
  • different lattices
  • different contexts
  • evaluation by the temporal quantization error

average(mean activity k steps into the past -
observed activity k steps into the past)2
28
General recursive SOM
SOM
quantization error
RSOM
NG
RecSOM
SOMSD
HSOMSD
MNG
now
past
29
General recursive SOM
  • MNG weight/context development

30
General recursive SOM
  • SOMSD average receptive fields and variation

31
General recursive SOM
The principle can be generalized to tree
structures!
a(t,t)
t
t
a
(w,c,c)
w a2
C(t) - c2
C(t) c2
C(t)
C(t)
32
General recursive SOM
Supervised well established recursive neural
networks for learning on tree-structured inputs.
33
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com