Title: Priority setting of emerging zoonoses
1Priority setting of emerging zoonoses
- Marieta Braks, Ph.D.
- and
- Prof. A. Havelaar, M. Toutenel and F. van Rosse
- Laboratory for Zoonoses and Environmental
Microbiology - RIVM, the Netherlands
- Discontools, Brussels
- 20 October 2008
2Contents
- Emerging zoonoses
- Priority setting
- Priority setting of emerging zoonoses
3From infectious diseases to emerging zoonoses
- List of 1415 infectious pathogens for humans
- 217 Viruses
- 538 Bacteriae and Rickettsiae
- 307 Fungi
- 66 Protozoa
- 287 Helminths
- 863 (61) are zoonotic,
- 175 emerging pathogens and of these 75 are
zoonotic
(Taylor et al, Phil.Trans. R. Soc. London B.
Biol. 2001)
4Priority setting
- Too much to study all in detail, choices are
necessary - Comparing risks is not impossible or immoral,
but it is very difficult --more so than either
supporters or detractors of the practice seem to
realize - Adam Finkel, Comparing Risks Thoughtfully
5Priority setting, choices
- Multi-dimensional problem
- Technical information ánd value judgements
- Interaction between researchers and policy makers
c.q. general population - One time or continuous?
- Simplicity vs. precision
- Transparancy and information management
6Priority setting, possibilities
- Consensus
- Simple but not very transpare
- Poor repeatability
- Semi-quantitative
- Transparant but arbitrary
- Better repeatability
- Quantitative
- Transparant and objective
- Knowledge management
7Approach to priority setting EmZoo
- Selecting agents
- Literature and expertise consortium
- Establishing criteria (risk aspects)
- Limited number
- Expressed in natural units
- Consortium with steering committee
- Operationalising criteria
- 4-5 classes (point estimate and range)
- Evaluation of all agents simple decision rules
current situation - Consortium
- Weighing criteria
- Panel session with policy makers
- Ranking of hypothetical zoonoses according to
perceived threat - Data analysis and reporting
- Information management system
- Improve data
- Update information
- Scenario analysis
8Criteria
- Probability of introduction
- Spread in animal reservoir
- Economic costs, animals
- Transfer from animals to man
- Spread in human reservoir
- Severity of human illness
- Case-fatality ratio human
- Economic costs, human
- Perception
9Semi-quantitative approach
Semiquantitative scores Semiquantitative scores Semiquantitative scores Semiquantitative scores Semiquantitative scores Semiquantitative scores
Criteria X1 X2 X3 X4 X5 X6 X7 X8 X9 Sum
High threat 5 4 4 4 4 4 5 4 4 38
Low threat 1 1 1 1 1 1 2 1 1 10
Ehrlichia chaffeensis 3 3 1 1 1 3 3 2 2 19
Bartonella henselae 5 2 1 1 1 1 3 1 1 16
Brucella melitensis 4 2 3 2 1 2 2 3 2 21
Brucella suis 4 2 3 1 1 2 3 3 1 20
Burkholderia pseudomallei 2 4 1 1 1 3 4 1 1 18
Campylobacter spp. 5 4 1 1 2 1 2 3 2 21
10Operationalising criteriaeconomic costs ANIMAL
- 4 classes, decision rules
- Low no illness in Dutch animal husbandry, or
control is possible at farm level - Average illness is possible in Dutch animal
husbandry and control at regional level - High illness is possible in Dutch animal
husbandry and control at national level - Very high illness is possible in Dutch animal
husbandry and export is reduced for more than ½
year - Quantification
- Low lt 10 M per year, point estimate 5 M pyr
- Avergae 10 100 M per year, point estimate 50
M pyr - High 100 1000 M per year, point estimate 500
M pyr - Very high gt 1000 M per year, point estimate
5000 M pyr
11Panel session
- Obtain information for weighing criteria
- Weights reflect policy choices of the Dutch
government - Ranking of hypothetical zoonoses
- 6 sets van 7 zoonoses and 1 trainings set
- Arrange from least to most threatening
- Individual judgement
- Written repetition after 2 weeks (2 sets of 7)
12Quantitative approach
Weights 0,50 -0,31 0,41 0,29 -0,24 0,23 0,62 0,50 0,29
Criteria X1 X2 X3 X4 X5 X6 X7 X8 X9 Sum
High threat 0,50 -0,04 0,41 0,29 -0,03 0,23 0,62 0,50 0,22 2,70
Low threat 0,00 -0,31 0,28 0,00 -0,24 0,01 0,00 0,34 0,00 0,09
Ehrlichia chaffeensis 0,03 -0,08 0,28 0,00 -0,24 0,08 0,03 0,40 0,07 0,56
Bartonella henselae 0,50 -0,11 0,28 0,00 -0,24 0,01 0,03 0,34 0,00 0,81
Brucella melitensis 0,25 -0,11 0,37 0,00 -0,24 0,02 0,00 0,45 0,07 0,81
Brucella suis 0,25 -0,11 0,37 0,00 -0,24 0,02 0,03 0,45 0,00 0,76
Burkholderia pseudomallei 0,00 -0,04 0,28 0,00 -0,24 0,08 0,31 0,34 0,00 0,74
Campylobacter spp. 0,50 -0,04 0,28 0,00 -0,09 0,01 0,00 0,45 0,07 1,19
13Semi-quantitative vs quantitative approach
14Results quantitative approach
15Overall conclusions
- Priority setting is a multidimensional problem
- Ranking depends on the criterium used
- A quantitative and systematic approach is
necessary - Current data are not complete, but data needs can
be prioritised - Method is currently being validated and
optimalised - International collaboration will speed up the
process