Clinical Perfusion Imaging 1'5 3T - PowerPoint PPT Presentation

1 / 121
About This Presentation
Title:

Clinical Perfusion Imaging 1'5 3T

Description:

Clinical Perfusion Imaging 1'5 3T – PowerPoint PPT presentation

Number of Views:468
Avg rating:5.0/5.0
Slides: 122
Provided by: jfkmedic
Category:

less

Transcript and Presenter's Notes

Title: Clinical Perfusion Imaging 1'5 3T


1
Clinical Perfusion Imaging1.5 3T
  • Lawrence N. Tanenbaum, M.D. FACR
  • New Jersey Neuroscience Institute - Seton Hall
    University
  • JFK Medical Center-Edison Imaging
  • www.drtmasters.com drt_at_drtmasters.com
  • Edison, New Jersey

2
Perfusion imagingprinciples
  • monitor the first pass of a rapid bolus injection
    of a standard MRI contrast agent through the
    cerebral vasculature
  • Gd T2 susceptibility effects cause a transient
    signal loss proportional to the amount of tracer
    in a given region
  • integration of data over the time course of the
    first pass of the contrast agent allows creation
    of map of brain perfusion

3
perfusion
4
Perfusion imagingtechnique
  • initiate single-shot EPI series
  • power inject Gd at 0.1-0.2 mmol/kg at 3 cc/sec.
  • process data on operators console
  • technologist creates map of whole brain dynamic
    susceptibility contrast

5
SE PerfusionEchoSpeed
SLE
  • 1900/ 80, 1 shot SE EPI
  • 192 x128
  • 11 locations
  • 7-10 mm / 0 mm
  • 107
  • 30 x 0.65 FOV (19), f R-L
  • 35 phases
  • 3 cc/sec, 8 sec inject delay

6
SE PerfusionEchoSpeed Plus
  • 1835-2000/ 80, 1 shot SE EPI
  • 192 x128
  • 11-12 locations
  • 7-10 mm / 0 mm
  • 105 111
  • 30 x 0.65 FOV (19), f R-L
  • 35 phases
  • 3 cc/sec, 8 sec inject delay

7
GE Perfusion EchoSpeed
  • single shot gradient echo EPI
  • TR 2266 TE 24.2 60 FA
  • 7-10 mm / 0 mm
  • FOV 22
  • 128 x 128
  • 35 phases, 12 locs, 80 seconds
  • 3 cc/sec, 8 sec inject delay

8
GE PerfusionEchoSpeed Plus
  • single shot gradient echo EPI
  • TR 1749 TE 19.5 (NVi 19.2)
  • 60 FA
  • 7-10 mm / 0 mm
  • FOV 22
  • 128 x 128
  • 35 phases, 12 locs, 63 seconds
  • 3 cc/sec, 8 sec inject delay

9
GRE PerfusionTwinSpeed
  • single shot gradient echo EPI
  • TE Twin 18.2, NVi 19.2
  • EchoSpeed 19.5, ES 24.2
  • TR 2000, 60 FA
  • 7-10 mm / 0 mm
  • FOV 22
  • 128 x 128
  • 33 phases, 15 locs, 66 seconds
  • 3 cc/sec, 8 sec inject delay

10
GRE Perfusion3T channel
  • single shot gradient echo EPI
  • TE Twin 18.2
  • TR 2000, 60 FA
  • 7 / 0 mm
  • FOV 22
  • 96 x 128
  • 33 phases, 18 locs, 68 seconds
  • 3 cc/sec, 8 sec inject delay

11
Perfusion imagingtechnique
  • SE technique
  • less susceptibility artifact
  • capillary level assessment
  • GE technique
  • faster
  • higher contrast resolution
  • susceptibility proportional to TE

12
EchoSpeed Plus
EchoSpeed
13
radiation
14
Perfusion imagingindications
  • neoplasm
  • characterization and surveillance
  • stroke / ischemia
  • Neuropsychology/ Psychiatry
  • cardiac stress

15
Perfusion Imaging
tumor vs. radiation necrosis
Conventional T2
CBV
  • status post surgery and RT for glioblastoma
  • conventional MR exhibits non-specific T2 changes
  • CBV map indicates small region of recurrent tumor

recurrent tumor
UCSF
16
Perfusion imaging
  • BBBB studies are insufficient to distinguish
    tumor recurrence from radiation related changes
  • FDG PET
  • 81 sensitivity, 40 specificity
  • Kahn et al AJR 1994 1631459-1465
  • Perfusion MR
  • 78 sensitivity, specificity
  • Lev et al RSNA 1997.

17
PET-CT
radiation necrosis
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
CBF
CBV
cCBV
24
MR-PET fusion
radiation necrosis
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
Steamboat 2001
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
perfusion
37
new onset seizures
Steamboat 2001
38
(No Transcript)
39
Glioblastoma multiforme
40
(No Transcript)
41
Multi-voxel MRSI
256 voxels 5 minutes
42
(No Transcript)
43
Perfusion imagingneuro-oncology
  • primary CNS lesions have vasculature that may
    have intact tight junctions
  • low grade tumors may not enhance on BBBB studies
  • extent of enhancement correlates poorly with the
    extent of high grade tumors
  • DSC studies sensitive to abnormal capillary
    density
  • perfusion imaging may significantly outperform
    BBBB studies in delineating the presence and
    extent of primary brain tumors

44
M. Sage, M.D.
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
3T
49
Perfusion imagingneuro-oncology
  • critical adjunct to BBBB imaging of neoplasms
  • many tumors have high rCBV
  • regions of increased rCBV correlate with areas of
    active tumor.
  • heterogeneous patterns of perfusion suggest high
    grade
  • radiation necrosis typically demonstrates low
    rCBV
  • lesion characterization may be possible
  • meningiomas have very high CBV in contrast to
    schwannomas

50
SE perfusion 3.0T
51
meningioma
52
0.0375 mmol/kg gadobenate
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
hemangioblastoma
57
Pilocytic astrocytoma
58
Perfusion imaginggoals in neuro-oncology
  • refine characterization, diagnosis
  • biopsy site selection
  • routine tumor surveillance
  • radiation necrosis vs. recurrent tumor
  • primary vs. metastatic

59
(No Transcript)
60
Perfusion imagingfindings in ischemia
  • CBV
  • regional perfusion deficit
  • compensatory increased volume
  • MTE (MTT)
  • regional prolongation of transit time

61
Perfusion MRI
62
Perfusion imaging
Mean Time to Enhance (MTE, MTT)
63
Perfusion imagingischemia
  • changes seen almost immediately after the
    induction of ischemia
  • more sensitive than conventional MRI
  • perfusion findings often more extensive than
    those on DW-EPI in early stroke
  • more accurately reflects the amount of tissue
    under ischemic conditions in the hyperacute
    period than DW EPI
  • DSC DWEPI (Na imaging) tissue at risk

64
(No Transcript)
65
CBV
66
Diffusion-Perfusion imagingBrain Attack Exam
T2
Diffusion Weighted
DSC
Region of low cerebral blood volume correlates
with ischemic region
Ischemic region appears bright on DW Image
10 hrs after onset of symptoms
67
Brain Attack Exam
CBV
FLAIR vs. Diffusion reveals acute infarct
MTE
Diffusion vs. DSC reveals tissue-at-risk
St. Lukes Hospital, Milwaukee, WI, Breger et al.
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
CT Perfusionimaging technique
  • identify slice/ slices covering three vascular
    territories
  • inject 40 cc _at_4 cc/sec.
  • 370-400 agent concentration
  • 45 second scan, 5 sec prep delay
  • 80 kVp, 190 mAs
  • process data on scanner console or workstation

76
CT Perfusion
MTT
CBF
CBV
77
(No Transcript)
78
ICA occlusion
CBV / NEI
79
ICA occlusion
Mean transit time / MTE
80
ICA occlusion
81
(No Transcript)
82
post diamox
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
seizure vs. right hemispheric infarction
94
right hemispheric ischemia
Las Vegas 2000
95
CT Perfusion- r/o stroke
CBF
CBV
MTT
96
CT Perfusion- r/o stroke
5
6
7
10
11
4
3
8
9
12
97
(No Transcript)
98
Perfusion CT functional assessment
  • right ICA, MCA, ACA occlusion
  • left ICA stenosis
  • left M1 stenosis
  • right A2 fills via left A2
  • VB system normal

99
(No Transcript)
100
(No Transcript)
101
(No Transcript)
102
Perfusion imagingcerebrovascular reserve
  • ability to augment flow to vascular beds
    compromised by vascular stenosis
  • acetazolamide (Diamox) or 5 CO2 challenge
  • abnormal results correlate with an increased risk
    of stroke
  • perfusion MR/CT may obtain info analogous to that
    of SPECT, transcranial doppler

103
Mean transit time
difference
before Diamox
after Diamox
T. Lee London, Ontario
104
Cerebral blood flow (rCBF)
before Diamox
after Diamox
difference
T. Lee London, Ontario
105
Cerebral blood volume (rCBV)
after Diamox
difference
before Diamox
T. Lee London, Ontario
106
(No Transcript)
107
(No Transcript)
108
(No Transcript)
109
HxTIA US carotid stenosis
110
(No Transcript)
111
(No Transcript)
112
Functional imagingAlzheimers disease
  • FDG PET
  • marked temporo-parietal hypometabolism
  • Tc-HMPAO SPECT
  • marked temporo-parietal hypoperfusion
  • DSC MRI
  • correlates well with SPECT

113
(No Transcript)
114
DAT
115
(No Transcript)
116
Dementia DAT
117
Perfusion imagingdementia
  • findings correlate well with cognitive impairment
  • may be useful in monitoring patients genetically
    at risk, and monitoring the effect of therapy

118
Perfusion imaging
  • Traumatic brain injury
  • focal rCBV deficits that correlate with cognitive
    impairment
  • Schizophrenia
  • decreased frontal lobe rCBV
  • HIV/ AIDS
  • multiple discrete foci of decreased CBV
  • Polysubstance abuse
  • multiple discrete foci of decreased CBV

119
traumatic brain injury
120
(No Transcript)
121
traumatic brain injury
122
(No Transcript)
123
DSC MRI
Tc HMPAO SPECT
124
(No Transcript)
125
(No Transcript)
126
Cerebral perfusion imagingtechnique comparison
  • Gd-perfusion MR (DSC)
  • rCBV, MTE
  • Tc-HMPAO SPECT, Xe-CT
  • cerebral blood flow (rCBF)
  • Iodine-perfusion CT
  • rCBF, rCBV, MTT
  • FDG-PET
  • cerebral metabolism

127
Perfusion imaging
  • advantages over PET, SPECT
  • no radiotracer necessary
  • higher spatial resolution

Steamboat 2001
128
Perfusion imaging
  • advantages over PET, SPECT
  • cost efficiency
  • added cost of about 45
  • free if already injecting
    for BBBB
  • SPECT 1000, PET 2000

129
Perfusion imaging
  • advantages over PET, SPECT
  • no radiotracer necessary
  • higher spatial resolution
  • cost efficiency
  • speed
  • DSC study in about one minute
  • less motion artifact in uncooperative patients
  • processing and filming in about 5 minutes

130
Time resolved breast MR
131
VIBRANT ASSET 1 min/pass bilat breast fat
sat auto-subtracted
132
FSPGR
T1 FLAIR
133
Myocardial perfusion
  • first pass perfusion
  • 100 msec per image
  • Adenosine stress
  • 7 sec ½ life
  • 5 cc/sec power injection
  • 0.05 mmol/kg

stress
rest
134
Myocardial perfusion FastCard echo train
  • hybrid of FGRE and EPI
  • first pass perfusion
  • 100 msec per image
  • speed
  • reduced artifacts

stress
rest
135
REST
STRESS
S. Wolff, MD
136
stress
Cardiac perfusion
rest
S. Wolf MD
137
stress
rest
138
stress
inferolateral ischemia
rest
139
Myocardial viability
La Jolla 2001
  • Wall thickness / motion
  • akinesis / dyskinesis
  • EDWT lt 3 mm
  • Dobutamine stress
  • low dose viability
  • high dose coronary arteries
  • Hyperenhancement

140
Delayed hyperenhancement
  • mechanism
  • contrast passes through injured cell membrane
  • hyperenhancement due to higher combined signal of
    enhanced intracellular and extracellular spaces
  • mde technique
  • T1 prep FGRE scan 10-15 minutes after
    administration of 0.1 0.2 mmol/kg of contrast.
  • significance
  • 90 of patients with HE of 51-75 of wall
    thickness involved did not improve after
    revascularization

Kim et al NEJM 20003431445-53
141
Delayed hyperenhancement
  • 804 segments with abnormal contractility
  • 694 with some hyperenhancement (HE)
  • likelihood of improved contractility decreased as
    transmural extent of HE increased
  • improvement seen in
  • 256/329 (78) without HE
  • 109/183 (60) with 1-25 wall thickness involved
  • 46/110 (42) with 26-50 wall thickness involved
  • 13/124 (10) with 51-75 wall thickness involved
  • 1/58 (2) with gt75 wall thickness involved

Kim et al NEJM 20003431445-53
142
Delayed hyperenhancement
143
(No Transcript)
144
JFK Medical Center
Write a Comment
User Comments (0)
About PowerShow.com