CS621: Artificial Intelligence Lecture 11: Perceptrons capacity - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

CS621: Artificial Intelligence Lecture 11: Perceptrons capacity

Description:

CS621: Artificial Intelligence. Lecture 11: Perceptrons capacity. Pushpak Bhattacharyya ... with input lines having associated weights and the cell having ... – PowerPoint PPT presentation

Number of Views:45
Avg rating:3.0/5.0
Slides: 21
Provided by: ProfBhat9
Category:

less

Transcript and Presenter's Notes

Title: CS621: Artificial Intelligence Lecture 11: Perceptrons capacity


1
CS621 Artificial IntelligenceLecture 11
Perceptrons capacity
  • Pushpak Bhattacharyya
  • Computer Science and Engineering Department
  • IIT Bombay

2
The Perceptron Model A perceptron is a
computing element with input lines having
associated weights and the cell having a
threshold value. The perceptron model is
motivated by the biological neuron.
Output y
Threshold ?
w1
wn
Wn-1
x1
Xn-1
3
y
1
?
Swixi
Step function / Threshold function y 1 for
Swixi gt? 0 otherwise
4
  • Threshold functions
  • n Boolean functions (22n) Threshold
    Functions (2n2)
  • 1 4 4
  • 2 16 14
  • 3 256 128
  • 64K 1008
  • Functions computable by perceptrons - threshold
    functions
  • TF becomes negligibly small for larger values
    of BF.
  • For n2, all functions except XOR and XNOR are
    computable.

5
Concept of Hyper-planes
  • ? wixi ? defines a linear surface in the (W,?)
    space, where Wltw1,w2,w3,,wngt is an
    n-dimensional vector.
  • A point in this (W,?) space
  • defines a perceptron.

y
x1
6
Perceptron Property
  • Two perceptrons may have different parameters but
    same functional values.
  • Example of the simplest perceptron
  • w.xgt? gives y1
  • w.x? gives y0
  • Depending on different values of
  • w and ?, four different functions are possible

w1
7
Simple perceptron contd.
True-Function
?lt0 Wlt0
0-function
Identity Function
Complement Function
?0 w0
?0 wgt0
?lt0 w0
8
Counting the number of functions for the simplest
perceptron
  • For the simplest perceptron, the equation is
    w.x?.
  • Substituting x0 and x1,
  • we get ?0 and w?.
  • These two lines intersect to
  • form four regions, which
  • correspond to the four functions.

w?
R4
R1
?0
R3
R2
9
Fundamental Observation
  • The number of TFs computable by a perceptron is
    equal to the number of regions produced by 2n
    hyper-planes,obtained by plugging in the values
    ltx1,x2,x3,,xngt in the equation
  • ?i1nwixi ?
  • Intuition How many lines are produced by the
    existing planes on the new plane? How many
    regions are produced on the new plane by these
    lines?

10
The geometrical observation
  • Problem m linear surfaces called hyper-planes
    (each hyper-plane is of (d-1)-dim) in d-dim, then
    what is the max. no. of regions produced by their
    intersection?
  • i.e. Rm,d ?

11
Concept forming examples
  • Max regions formed by m lines in 2-dim is Rm,2
    Rm-1,2 ?
  • The new line intersects m-1 lines at m-1 points
    and forms m new regions.
  • Rm,2 Rm-1,2 m , R1,2 2
  • Max regions formed by m planes in 3 dimensions
    is
  • Rm,3 Rm-1,3 Rm-1,2 , R1,3 2

12
Concept forming examples contd..
  • Max regions formed by m planes in 4 dimensions
    is
  • Rm,4 Rm-1,4 Rm-1,3 , R1,4 2
  • Rm,d Rm-1,d Rm-1,d-1
  • Subject to
  • R1,d 2
  • Rm,1 2

13
General Equation
  • Rm,d Rm-1,d Rm-1,d-1
  • Subject to
  • R1,d 2
  • Rm,1 2
  • All the hyperplanes pass through the origin.

14
Method of Observation for lines in 2-D
  • Rm,2 Rm-1,2 m
  • Rm-1,2 Rm-2,2 m-1
  • Rm-2,2 Rm-3,2 m-2
  • R2,2 R1,2 2
  • Therefore, Rm,2 Rm-1,2 m
  • 2 m (m-1) (m-2) 2
  • 1 ( 1 2 3 m)
  • 1 m(m1)/2

15
Method of generating function
  • Rm,2 Rm-1,2 m
  • f(x) R1,2 x R2,2 x2 R3,2 x3 Ri,2 xm
  • a gtEq1
  • xf(x) R1,2 x2 R2,2 x3 R3,2 x4
  • Ri,2 xm1 a gtEq2
  • Observe that Rm,2 - Rm-1,2 m

16
Method of generating functions cont
  • Eq1 Eq2 gives
  • (1-x)f(x) R1,2 x (R2,2 - R1,2)x2
  • (R3,2 - R2,2)x3
  • (Rm,2 - Rm-1,2)xm a
  • (1-x)f(x) R1,2 x (2x2 3x3 mxm..)
  • 2x2 3x3 mxm..
  • f(x) (2x2 3x3 mxm..)(1-x)-1

17
Method of generating functions cont
  • f(x) (2x2 3x3 mxm..)(1xx2x3)
  • ?Eq3
  • Coeff of xm is
  • Rm,2 (2 2 3 4 m)
  • 1m(m1)/2

18
The general problem of m hyperplanes in d
dimensional space
  • c(m,d) c(m-1,d) c(m-1,d-1)
  • subject to
  • c(m,1) 2
  • c(1,d) 2

19
Generating function
  • f(x,y) R1,1xy R1,2xy2 R1,3xy3
  • R2,1x2y R2,2 x2y2 R2,3x2y3...
  • R3,1x3y R3,2x3y2
  • f(x,y) ?m1?n1 Rm,d xmyd

20
of regions formed by m hyperplanes passing
through origin in the d dimensional space
  • c(m,d) 2.Sd-1i0m-1ci
Write a Comment
User Comments (0)
About PowerShow.com