Vehicle Detection and Tracking in Surveillance - PowerPoint PPT Presentation

1 / 9
About This Presentation
Title:

Vehicle Detection and Tracking in Surveillance

Description:

Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. ( 2006) ... In: IEEE Workshop on Motion and Video Computing. ( Orlando, 2002) ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 10
Provided by: donha6
Category:

less

Transcript and Presenter's Notes

Title: Vehicle Detection and Tracking in Surveillance


1
Vehicle Detection and Tracking in Surveillance
  • University of Central Florida
  • Andrew Miller, Brandyn White, Arslan Basharat,
    Jingen Lieu,
  • and Dr. Mubarak Shah

2
Overview
  • Code Split
  • Knight System ( SVM classification)
  • White Knight (PSO and ICD)
  • Abstractions, Python Interface

3
Earlier Work
  • KNIGHT System
  • Object Detection (Background Subtraction)
  • Multi-frame Correspondence Tracking
  • Classification (Recurrent Motion)
  • Shadow Removal
  • Yilmaz, A., Javed, O., Shah, M. Object tracking
    A survey. ACM Comput. Surv. (2006)
  • Javed, O., Shah, M. Tracking and ob ject
    classification for automated surveillance. In
    The Seventh European Conference on Computer
    Vision. (Denmark, 2002)
  • Javed, O., Shafique, K., Shah, M. A hierarchical
    approach to robust background subtraction using
    color and gradient information. In IEEE Workshop
    on Motion and Video Computing. (Orlando, 2002)
  • Shafique, K., Shah, M. A noniterative greedy
    algorithm for multiframe point correspondence.
    IEEE Trans. Pattern Anal. Mach. Intell. (2005)

4
Automatic Parameter Tuning
  • Prepare ground-truth segmentations
  • A particles position represents a parameter
    configuration
  • Use swarm equations to update particles
  • Social and Cognitive forces

Brandyn White and Mubarak Shah "Automatically
Tuning Background Subtraction Parameters Using
Particle Swarm Optimization", IEEE International
Conference on Multimedia Expo, Beijing, China
2007.
5
Illumination Change Detection
  • Problem illumination changes cause long-term
    artifacts
  • Linear regression over time (30 frames)
  • Correlation coefficient indicates trend of
    illumination change
  • Temporarily increase learning rate

6
SVM Classification
  • Nine-dimensional feature vector
  • Eight edge-orientation histogram bins
  • Aspect ratio
  • Linear classifier

7
Results
  • VACE Core (September 2006)
  • Mean MOTA Mean MOTA 51.5 (Unofficial result)
  • CLEAR (May 2007)
  • (KNIGHT) Mean MOTA 53.3 MOTP 55.9
  • (WKNIGHT) Mean MOTA 22.5 MOTP 63.7
  • Didnt finish coding White Knight
  • Simple tracking and classification
  • How much does background subtraction matter?
  • The goal of evaluations is to learn how to answer
    this question rapidly and methodically

8
Results MOTA Boxplots
  • Statistically Significant?
  • High degree of per-sequence variation

Knight
White Knight
9
Results Per-Sequence Comparison?
  • Precision vs Accuracy
  • Mean Absolute Difference vs Mean Difference?

Red (SVM) Blue (PSO and Illumination)
Write a Comment
User Comments (0)
About PowerShow.com