Diffuse supernova neutrinos: what can we learn and how - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Diffuse supernova neutrinos: what can we learn and how

Description:

Diffuse supernova neutrinos: what can we learn (and how)? Cecilia Lunardini ... The feeble signal of all SNe. Sum over the whole universe: Supernovae ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 39
Provided by: cecilial8
Category:

less

Transcript and Presenter's Notes

Title: Diffuse supernova neutrinos: what can we learn and how


1
Diffuse supernova neutrinos what can we learn
(and how)?
  • Cecilia Lunardini
  • Arizona State University
  • And RIKEN BNL Research Center

2
The feeble signal of all SNe
  • Sum over the whole universe

Supernovae
S. Ando and K. Sato, New J.Phys.6170,2004.
3
Probes deep in stars interior
  • physics near SN core
  • Energetics of collapse (mass of core , eq. of
    state) ? spectra formation
  • ? oscillations at extreme density
  • ?-? refraction effects, ? mass spectrum, ?13
  • new physics
  • axions, majorons, sterile ?,
  • ? decay,

4
  • Alternative to a galactic supernova!
  • Lower statistics
  • Continuous flux, no waiting time
  • might be standard physics in future!
  • 20 events/year at 20 SuperK
  • A galactic supernova will always be once in a
    lifetime, the DF will be everyday stuff

5
and deep in space (and time!)
  • 40 of ?s above 19.3 MeV are from zgt0.5!

S. Ando and K. Sato, New J.Phys.6170,2004.
6
  • Test cosmological rate of Sne
  • Probe history of star formation
  • Short lived stars ? SN rate traces star formation
    rate RSF / RSN
  • Reveal the first stars (Population III, z 13
    -20)

7
(No Transcript)
8
Predicting the DF
Cosmological supernova rate
from individual SN with oscillations
  • At E gt 10-15 MeV

From original neutrino spectrum ( ? 5-7 MeV,
depending on oscillations, etc.)
? dependence
C.L., PRD75,2007
9
Status of theory anti-?e flux
C.L., Astropart.Phys.26190-201,2006
  • Differences due to different inputs/methods

10
Experimental status (new!)
C. L. and O.L.G. Peres (UniCamp, Brazil), in
preparation
11
The future what can we learn?
  • Potential of next generation detectors

12
Pure water anti-?e
  • anti-?e p ! n e

13
Pros and Cons
  • Well studied
  • Scalable
  • Background-dominated
  • Cut at Ethr19.3 MeV (anti-?e energy)
  • invisible ?, atm. ?

Fogli et al. JCAP 0504002,2005
14
(10-20) SK event rate
  • Exposure 1.6 Mton year
  • e.g., 0.2 Mt for 8 years
  • Threshold 19.3 MeV, 100 efficiency

C.L., Astropart.Phys.26190-201,2006, Fogli et
al. JCAP 0504002,2005, Volpe Welzel, 2007,
C.L. O.L.G. Peres, to appear soon.
15
Spectral sensitivity limited by background
  • needs N 100-200
  • larger than typical, (incompatible with SN1987A)
  • Useful
  • N(18-23 MeV)/N(23-28 MeV) 0.6 - 3

Normalized to 60 events, b3.28
Subtracted signal total error
C.L., Phys.Rev.D75073022,2007 Error bars from
Fogli et al, JCAP 0504002,2005
16
Normalized to 60 events, E0/MeV15, a2.6
  • Testing b not realistic
  • Good to learn about original spectrum
  • No degeneracy!

b5
b3.28
b2
C.L., Phys.Rev.D75073022,2007
17
Most likely scenario rate only
Reminds me of Ray Davis Homestake!
  • Test of normalizations
  • SN rate normalization
  • SN neutrino flux luminosity
  • Model-dependent (need to assume neutrino
    spectrum)
  • Indirect sensitivity to energy spectrum
  • Tested for fixed normalizations

18
Room for suprises invisible Supernovae?
Artist's concept
From diffuse ? flux
SNR/SNR0
From astro surveys (SNAP, JWST)
L?/L0
http//snap.lbl.gov/ http//www.jwst.nasa.gov/,
19
  • Example from the present SK bound constraining
    SN rate normalization
  • Spectrum dependent!

Beacom et al., JCAP 0504017,2005.
20
Water Gadolinium
  • Anti-?e p ! n e

21
Pros and cons
  • Solution of water GdCl3 (0.2)
  • Higher risk (new technique)
  • Cheap, safe, easy (SK tank can be used)
  • n capture on Gd e and n in coincidence
  • Filters spallation and invisible muons

GADZOOKS Beacom and Vagins, PRL93, 2004
22
  • Major improvement with background
  • Eth 11.3 MeV (limited by reactors)

Fogli et al. JCAP 0504002,2005
23
(10-20) SK event rate
  • Exposure 1.6 Mton year
  • e.g., 0.2 Mt for 8 years
  • Threshold 11.3 MeV, 100 efficiency

C.L., Astropart.Phys.26190-201,2006, Fogli et
al. JCAP 0504002,2005, Volpe Welzel, 2007,
C.L. O.L.G. Peres, to appear soon.
24
Spectral sensitivity!
Normalized to 150 events, b3.28
C.L., Phys.Rev.D75073022,2007
25
A step beyond SN1987A!
  • Test SN codes of spectra formation, some
    oscillation effects, etc.
  • Probe part of the parameter space with 0.1 Mt
    yr
  • Incompatible with SN1987A

0.1 Mt yr
Yuksel, Ando and Beacom, Phys.Rev.C74015803,2006
26
Chance to test ? !
Normalized to 150 events
r 0.6 0.9
C.L., Phys.Rev.D75073022,2007
27
Artist's concept
Direct supernova observations
Diffuse neutrinos
C.L., Astropart.Phys.26190-201,2006
28
Liquid scintillator
  • Anti-?e p ! n e

29
LENA _at_ Pyhäsalmi (Finland), 50 Kt
event rate in 10 yrsinside the energy window
from 9.7 to 25 MeV
From M. Wurm, talk at NNN06
background events 12
30
Avoid nuclear powerplants!
Wurm et al., PRD75, 2007
For LENA
31
Probing the neutrino spectrum
32
Sensitivity to SN rate
33
Liquid argon
  • ?e Ar ! K e-
  • Best ?e detector!
  • With both ?e and anti-?e physics potential at
    least doubles!

34
  • Background
  • Solar
  • Atmospheric
  • Energy window 16-40 MeV (normalization-dependent)
  • 0.5 Mt year
  • N 60

Cocco et al., JCAP 0412002,2004
35
Perspectives for the future
36
Conservative scenario
  • No galactic SN in the next 10 yrs
  • The DF will be detected first data after
    SN1987A!
  • WaterGd 20 kt ? indication
  • Water 0.4 Mt ? evidence (rate
    only?)
  • WaterGd 0.4 Mt ? measure spectrum
  • or Liquid scintillator 50 kt

37
  • With spectral sensitivity beyond SN1987A
  • Strong focus on original spectrum
  • Some sensitivity to ?
  • constraint on L? R(0)
  • More precise ? from SN surveys (SNAP, JWST)

http//snap.lbl.gov/ http//www.jwst.nasa.gov/,
38
Exciting scenario
  • Precise L? and spectrum from Galactic supernova
  • Precise ? from SN surveys
  • DF will help measure
  • R(0) (independent check)
  • ? (independent check)
  • fraction of stars that become SN (failed SN?)
  • progenitor dependence of neutrino spectrum
Write a Comment
User Comments (0)
About PowerShow.com