Visual Object Recognition - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Visual Object Recognition

Description:

Visual Object Recognition – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 34
Provided by: bastia
Category:

less

Transcript and Presenter's Notes

Title: Visual Object Recognition


1
Visual Object Recognition
  • Bastian Leibe
  • Computer Vision Laboratory
  • ETH Zurich
  • Chicago, 14.07.2008

Kristen Grauman Department of Computer
Sciences University of Texas in Austin
2
Outline
  • Detection with Global Appearance Sliding
    Windows
  • Local Invariant Features Detection Description
  • Specific Object Recognition with Local Features
  • ? Coffee Break ?
  • Visual Words Indexing, Bags of Words
    Categorization
  • Matching Local Features
  • Part-Based Models for Categorization
  • Current Challenges and Research Directions
  • Highlight of some research topics not covered in
    the main tutorial

2
K. Grauman, B. Leibe
3
Benchmark Data
  • What degree of difficulty do current datasets
    have?

4
Example Caltech-101
A dataset that has been about mastered
Images from the Caltech-101 101-way multi-class
classification problem
K. Grauman, B. Leibe
5
Example Caltech256
Images from the Caltech-256 256 multi-class
recognition problem
K. Grauman, B. Leibe
6
Example Pascal Visual Object Classes Challenge
Pascal VOC 2007 Binary detection problems
http//pascallin.ecs.soton.ac.uk/challenges/VOC/
K. Grauman, B. Leibe
7
Example LabelMe
http//labelme.csail.mit.edu/
K. Grauman, B. Leibe
8
Current challenges ongoing research
  • Multi-cue integration
  • Finer level categorization
  • View invariant recognition
  • Unsupervised category discovery
  • Learning from noisily labeled images
  • Integration of segmentation and recognition
  • Learning with text and images/video
  • Use of video
  • Context and scene layout

9
Multi-cue integration
  • Single cues often not sufficient.
  • Integrate multiple local and global cues.

10
Multi-Category Discrimination
  • Distinguish similar categories.
  • Need to look at specific details!

10
K. Grauman, B. Leibe
11
Multi-Aspect Recognition
  • Detectors for different viewpoints ? How can this
    be improved?

11
K. Grauman, B. Leibe
12
Multi-Aspect Recognition
Hoiem, Rother, Winn, CVPR07
13
Multi-Aspect Recognition
Rothganger et al., CVPR03
Savarese Fei-Fei, ICCV07
13
K. Grauman, B. Leibe
14
Unsupervised, semi-supervised category discovery
Topic models for images
Latent Dirichlet Allocation (LDA)
z
c
?
w
N
D
Sivic et al. ICCV 2005, Fei-Fei et al. ICCV 2005
Figure credit Fei-Fei Li
15
Unsupervised, semi-supervised category discovery
Clustering cluttered images Learning from noisy
keyword-based image search results
Grauman Darrell, CVPR 2006
Fergus et al. ECCV 2004, ICCV 2005
Li Fei-Fei, CVPR 2007
16
Learning with text and images/video
Barnard et al. JMLR 2003
Berg, Berg, Edwards, Forsyth, NIPS 2006
Gupta et al. ECML 2008
17
Integrating segmentation recognition
Borenstein Ullman, ECCV 2002
Kumar et al. CVPR 2005
Kannan, Winn, Rother, NIPS 2006
Tu, Chen, Yuille, Zhu, ICCV 2003
18
Role of context, understanding scene layout
Antonio Torralba, IJCV 2003
19
Role of context, understanding scene layout
Image
World
Hoiem, Efros, Hebert, CVPR 2006
20
Integration with Scene Geometry
  • Goal Find the ground plane
  • Restrict object location
  • Assume Gaussian size prior
  • ? Significantly reduced search space

Search corridor
Hough Volume
21
Extensions
  • Combination with 3D Geometry
  • Mobile Pedestrian Detection

Leibe, Cornelis, Cornelis, Van Gool, CVPR07
Ess, Leibe, Van Gool, ICCV07
21
22
Detections Using Ground Plane Constraints
left camera 1175 frames
Leibe et al. CVPR07
23
Extensions Tracking-by-Detection
  • Spacetime trajectory analysis
  • Link up detections to form physically plausible
    ST trajectories
  • Select set of ST trajectories that best explain
    the data

Leibe et al. CVPR07
24
Dynamic Scene Analysis Results
Leibe et al. CVPR07
25
Extensions (2)
  • Combination 3D Reconstruction

Cornelis, Leibe, Cornelis, Van Gool, 3DPVT06
26
Textured 3D Model
  • Run-times
  • SfM Bundle adjustment 27-30 fps on CPU
  • Dense reconstruction 36 fps on GPU

Cornelis, Cornelis, Van Gool, CVPR06
27
Improved 3D City Model
  • Enhancing your driving experience

Cornelis, Leibe, Cornelis, Van Gool, 3DPVT06
28
Putting It All Together
29
Mobile Pedestrian Tracking
Ess, Leibe, Schindler, Van Gool, CVPR08
30
Mobile Tracking Through Crowds
Ess, Leibe, Schindler, Van Gool, CVPR08
31
Extension Recovering Articulations
1...N
  • Idea Only perform articulated tracking where
    its easy!
  • Multi-person tracking
  • Solves hard data association problem
  • Articulated tracking
  • Only on individual tracklets between occlusions

Gammeter, Ess, Jaeggli, Schindler, Leibe, Van
Gool, ECCV08
32
Articulated Multi-Person Tracking
  • Multi-Person tracking
  • Recovers trajectories and solves data association
  • Estimates 3D walking direction and speed
  • Detects occlusion events

Gammeter, Ess, Jaeggli, Schindler, Leibe, Van
Gool, ECCV08
33
Articulated Tracking under Egomotion
Gammeter, Ess, Jaeggli, Schindler, Leibe, Van
Gool, ECCV08
34
(No Transcript)
35
Summary
  • Visual recognition is a challenging and very
    active research area.
  • Weve covered some basic models and
    representations that have been shown to be
    effective, and highlighted some ongoing issues.
  • See tutorial website for slides, links,
    references.
  • http//www.vision.ee.ethz.ch/bleibe/teaching/tuto
    rial-aaai08/
  • Thank you!

K. Grauman, B. Leibe
Write a Comment
User Comments (0)
About PowerShow.com