ECE434a Advanced Digital Systems L02 - PowerPoint PPT Presentation

About This Presentation
Title:

ECE434a Advanced Digital Systems L02

Description:

Encoders. How to implement functions. using ROMs, PLAs, and PALs. 9/18/09. 3. Review: ... Encoders. Code Converters. Comparators. Adders/Subtractors ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 39
Provided by: Aleksandar72
Category:

less

Transcript and Presenter's Notes

Title: ECE434a Advanced Digital Systems L02


1
ECE434aAdvanced Digital SystemsL02
  • Electrical and Computer EngineeringUniversity of
    Western Ontario

2
Outline
  • What we know
  • Laws and Theorems of Boolean Algebra
  • Simplification of Logic Expressions
  • What we do not know
  • How to use K-maps for 5, 6 variables
  • How to design using only NAND or only NOR gates
  • What are tri-state buffers for
  • What are basic combinational building blocks
  • Multiplexers
  • Decoders
  • Encoders
  • How to implement functions using ROMs, PLAs, and
    PALs

3
Review Laws and Theorems of Boolean Algebra
4
ReviewLaws and Theorems of Boolean Algebra
5
Review Simplifying Logic Expressions
  • Combining terms
  • Use XYXYX, XXX
  • Eliminating terms
  • Use XXYX
  • Eliminating literals
  • Use XXYXY
  • Adding redundant terms
  • Add 0 XX
  • Multiply with 1 (XX)

6
Review Karnaugh Maps
  • Example

Sum of products
Product of sums
7
Five variable Karnaugh Map
  • f(1) 2,3,6,7,9,13,18,19,22,23,24,25,29

BC
BC
00
01
10
11
00
01
11
10
DE
DE







1
00
00
01
01
11
11
10
10
A1
A0
8
Six Variable Karnaugh Map
AB00
AB01
AB10
AB11
9
Designing with NAND and NOR Gates (1)
  • Implementation of NAND and NOR gates is easier
    than that of AND and OR gates (e.g., CMOS)

10
Designing with NAND and NOR Gates (2)
  • Any logic function can be realized using only
    NAND or NOR gates gt NAND/NOR is complete
  • NAND function is complete can be used to
    generate any logical function
  • 1 a I (a a) a a 1
  • 0 a I (a a) a I (a a) 1 1 0
  • a a a a
  • ab (a b) (a b) (a b) ab
  • ab (a a) (b b) a b a b

11
Conversion to NOR Gates
  • Start with POS (Product Of Sums)
  • circle 0s in K-maps
  • Find network of OR and AND gates

12
Conversion to NAND Gates
  • Start with SOP (Sum of Products)
  • circle 1s in K-maps
  • Find network of OR and AND gates

13
Tristate Logic and Busses
  • Four kinds of tristate buffers
  • B is a control input used to enable and disable
    the output

14
Data Transfer Using Tristate Bus
15
Combinational-Circuit Building Blocks
  • Multiplexers
  • Decoders
  • Encoders
  • Code Converters
  • Comparators
  • Adders/Subtractors
  • Multipliers
  • Shifters

16
Multiplexers 2-to-1 Multiplexer
  • Have number of data inputs, one or more select
    inputs, and one output
  • It passes the signal value on one of data inputs
    to the output

w
s
0
w
0
0
f
s
f
w
1
1
w
1
(a) Graphical symbol
(c) Sum-of-products circuit
f
s
w
0
0
w
1
1
(b) Truth table
17
Multiplexers 4-to-1 Multiplexer
s
0
s
0
s
f
s
s
1
1
0
w
0
w
00
w
0
0
0
s
0
1
w
01
w
1
0
1
f
1
w
10
w
2
1
0
2
w
w
11
3
w
1
1
1
3
f
(b) Truth table
(a) Graphic symbol
w
2
w
3
(c) Circuit
18
Multiplexers Building Larger Mulitplexers
s
0
s
1
s
1
w
s
0
0
w
3
w
0
0
w
1
1
w
s
2
4
s
0
3
f
w
1
7
w
f
0
2
w
w
1
3
8
w
11
(a) 4-to-1 using 2-to-1
(b) 16-to-1 using 4-to-1
w
12
w
15
19
Synthesis of Logic Functions Using Muxes
w
f
w
w
2
1
2
w
1
0
0
0
0
1
0
1
1
f
1
1
0
1
0
0
1
1
(a) Implementation using a 4-to-1 multiplexer
f
w
w
1
2
f
w
1
w
1
0
0
0
w
0
2
1
0
1
w
w
1
2
2
1
1
0
f
0
1
1
(c) Circuit
(b) Modified truth table
20
Synthesis of Logic Functions Using Muxes
w
w
w
f
1
2
3
f
w
w
1
2
0
0
0
0
0
0
0
0
1
0
0
w
0
1
3
1
0
0
0
w
1
0
3
w
1
1
1
0
2
1
1
1
w
1
0
0
0
1
0
0
1
1
1
w
1
0
1
1
3
f
1
1
1
1
1
(a) Modified truth table
(b) Circuit
21
Decoders n-to-2n Decoder
  • Decode encoded information n inputs, 2n outputs
  • If En 1, only one output is asserted at a time
  • One-hot encoded output
  • m-bit binary code where exactly one bit is set to
    1

w
y
0
0
n
n
2
inputs
w
outputs
n
1

y
n
Enable
2
1

En
22
Decoders 2-to-4 Decoder
y
w
w
y
y
y
En
0
1
0
1
2
3
w
0
0
0
1
1
0
0
0
y
0
0
1
1
0
1
0
0
w
1
1
0
1
0
0
1
0
1
1
1
0
0
0
1
y
x
x
0
0
0
0
0
1
(a) Truth table
y
2
w
y
0
0
w
y
y
1
1
3
y
2
En
y
En
3
(c) Logic circuit
(b) Graphic symbol
23
Decoders 3-to-8 Using 2-to-4
w
y
w
y
0
0
0
0
y
w
w
y
1
1
1
1
y
y
2
2
w
2
y
y
En
3
3
y
w
y
En
4
0
0
y
w
y
5
1
1
y
y
2
6
y
y
En
7
3
24
Decoders 4-to-16 Using 2-to-4
w
y
w
y
0
0
0
0
y
w
w
y
1
1
1
1
y
y
2
2
y
y
En
3
3
w
y
y
0
0
4
w
y
y
1
1
5
y
y
2
6
w
y
w
y
y
2
En
0
0
3
7
w
y
w
1
1
3
y
2
w
y
y
y
En
En
8
0
0
3
w
y
y
1
1
9
y
y
2
10
y
y
En
3
11
w
y
y
0
0
12
y
w
y
1
1
13
y
y
2
14
y
y
En
3
15
25
Encoders
  • Opposite of decoders
  • Encode given information into a more compact form
  • Binary encoders
  • 2n inputs into n-bit code
  • Exactly one of the input signals should have a
    value of 1,and outputs present the binary number
    that identifies which input is equal to 1
  • Use reduce the number of bits (transmitting and
    storing information)

w
0
y
0
n
n
2
outputs
inputs
y
n
1

w
n
2
1

26
Encoders 4-to-2 Encoder
w
y
y
w
w
w
3
1
0
2
1
0
w
0
0
0
0
0
0
1
w
1
y
0
1
0
0
1
0
0
1
0
0
1
0
0
w
2
1
1
1
0
0
0
y
1
w
3
(a) Truth table
(b) Circuit
27
Encoders Priority Encoders
  • Each input has a priority level associated with
    it
  • The encoder outputs indicate the active
    inputthat has the highest priority

(a) Truth table for a 4-to-2 priority encoder
w
w
y
y
w
w
z
0
1
0
1
2
3
d
d
0
0
0
0
0
0
0
1
1
0
0
0
x
0
1
1
1
0
0
x
x
1
0
1
1
0
x
x
x
1
1
1
1
28
Code Converters
  • Convert from one type of input encoding to a
    different output encoding
  • E. g., BCD-to-7-segment decoder

w
a
b
w
w
w
c
d
e
f
g
0
1
2
3
a
a
1
1
1
0
0
0
0
1
1
1
0
b
w
0
1
1
1
0
0
0
0
0
0
0
0
b
f
c
w
1
1
0
0
1
0
0
1
1
0
1
1
d
w
1
1
1
1
1
0
0
1
0
0
1
g
2
e
c
e
w
0
1
1
0
0
1
0
0
0
1
1
3
f
1
0
1
0
1
0
1
1
0
1
1
g
d
0
1
1
0
1
0
1
1
1
1
1
(b) 7-segment display
1
1
1
0
1
1
1
0
0
0
0
(a) Code converter
0
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
1
(c) Truth table
29
Extension of Digital Design Fundamental
  • What is the optimization?
  • Synthesis
  • Design project 1
  • Optimization based on majority gate
  • Modified K-map based on majority gate
  • Optimization based on pass gate
  • Modified K-map based on pass gate

30
Programmable Logic Devices
  • Read Only Memories (ROMs)
  • Programmable Logic Arrays (PLAs)
  • Programmable Array Logic Devices (PALs)

31
Read-Only Memories
  • Store binary data
  • data can be read out whenever desired
  • cannot be changed under normal operating
    conditions
  • n input lines, m output lines gt array of 2n
    m-bit words
  • Input lines serve as an address to select on of
    2n words
  • Use ROM to implement logic functions?
  • n variables, m functions

32
Basic ROM Structure
33
ROM Types
  • Mask-programmable ROM
  • Data is permanently stored (include or omit the
    switching elements)
  • Economically feasible for a large quantity
  • EPROM (Erasable Programmable ROM)
  • Use special charge-storage mechanism to enable or
    disable the switching elements in the memory
    array
  • PROM programmer is used to provide appropriate
    voltage pulses to store electronic charges
  • Data is permanent until erased using an
    ultraviolet light
  • EEPROM Electrically Erasable PROM
  • erasure is accomplished using electrical pulses
    (can be reprogrammed typically 100 to 1000
    times)
  • Flash memories - similar to EEPROM except they
    use a different charge-storage mechanism
  • usually have built-in programming and erase
    capability, so the data can be written to the
    flash memory while it is in place, without the
    need for a separate programmer

34
Programmable Logic Arrays (PLAs)
  • Perform the same function as a ROM
  • n inputs and m outputs m functions of n
    variables
  • AND array realizes product terms of the input
    variables
  • OR array ORs together the product terms

35
PLA 3 inputs, 5 p.t., 4 outputs
36
nMOS NOR Gate
37
AND-OR Array Equivalent
38
To Do
  • Textbook
  • Chapter 1.3, 1.4, 1.13
  • Read
  • Alteras MAXplus II and the UP1 Educational
    boardA Users Guide, B. E. Wells, S. M. Loo
  • Altera University Program Design Laboratory
    Package
  • Design Project 1 majority gate and pass gate
Write a Comment
User Comments (0)
About PowerShow.com