Classes%20of%20External%20Decisions - PowerPoint PPT Presentation

About This Presentation
Title:

Classes%20of%20External%20Decisions

Description:

Investment decision = sacrificing current wealth for increased ... Decisions ... Assumptions Underlying Our Decision Model. 1. Expected consequences ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 32
Provided by: sternbu
Category:

less

Transcript and Presenter's Notes

Title: Classes%20of%20External%20Decisions


1
Classes of External Decisions
  • Investment Decisions
  • Distribution Decisions

2
  • Investment decision sacrificing current
    wealth for increased wealth in the
    future.
  • Wealth command over good and services.

3
Features of Investment Decisions
  • 1. Investment alternatives associated with a
    stream of expected economic consequences
  • example
  • 2. Expected consequences are uncertain
  • example
  • 3. Expected consequences differ in timing and
    magnitude
  • example

4
Assumptions Underlying Our Decision Model
  • 1. Expected consequences can be expressed in
  • terms of money flows
  • 2. Expected cash flows are certain
  • 3. No decision constraints

5
(.25-.10) 24,000 (.25 - .11) 24,000
(.25-.12)24,000 -4,500
3,600 3,360 3,120 Chevy
___________________________________
1 2 3 (.25 - .08)24,000
(.25-.07) 24,000 (.25-.06) 24,000
-6,900 4,080 4,320
4,560 Fiat _____________________________
______ 1 2
3
6
  • Savings
  • ?Savings- ?Costs Net Savings Per Year
  • Chevy 10,080 - 4,500 5,580
    1,860
  • Fiat 12,960 - 6,900 6,060
    2,020
  • Decision Choose
    _______________

7
Time preference rate f (opportunity rate of
return)
  • the rate of return you
    require for giving up the use of money for
    a period of time.

8
Opportunity Set
  • Passbook savings
  • Money market accounts
  • Tax exempts
  • Junk bonds
  • Stocks

9
Assume r 10
  • 1 1(.10)
  • 1(1 .10)
  • -1 1.10

1
10
1(1 .10) 1(1 .10).10 1(1
.10)(1 .10) -1 1(1 .10) 1(1
.10)² 1.21
2
1
11
-1 1(1 .10) 1(1 .10)²
1(1 .10)³ 1.33

1
2
3
12
Future Value of a Sum
  • Let FV future value of a sum
  • r time preference rate
  • n number of compounding periods
  • pv principle sum to be invested at
  • present
  • FV PV (1 r)n


interest factor
13
Problem What will 1,000 invested at
8 accumulate to at the end of five years?
?
1,000
1
2
3
4
5
14
FV PV (1 r)n
  • 1,000 (1 .08)5

1,000 (1.47)
1,470
15
Future Value of 1
rs
ns
1
2
3
. . .
8
  • 1
  • 2
  • 3
  • 4
  • 5
  • .
  • .
  • .

1.47
16
FV PV (fvf - .08 - 5) 1,000 (1.47
1,470
)
17
r ?

1 1.21 ___________________
_________________ 1
2
18
Present Value of a Sum
FV PV (1 r)n PV FV/(1 r)n FV 1/(1
r)n int. factor

19
  • 1 1.21
  • X 1
  • 1.21X 1
  • X 1/1.21
  • .83

20
  • 1 1.21
  • ____________________________________
  • 1
    2
  • .83 1

21
  • 1 1.21
  • ____________________________________
  • 1
    2
  • ? 1

22
Problem What is 1,000 promised at the end of
five years worth today if r 8?
  • ________________________________
  • ?
  • ___________________________________
  • 1 2 3 4 5
  • PV 1,000 (pvf - .08 - 5)
  • 1,000 (.681)
  • 681

1,000
23
Annuity
  • 100 100 100
  • ___________________________________
  • 1 2 3
  • 100 200 100
  • ___________________________________
  • 1 2 3

24
  • 200 200 200
  • ___________________________________
  • 1 2 3

25
Present Value of an Annuity(r 10)
  • 200 200 200
  • ___________________________________
  • 1 2 3
  • PV 200(.909) 200(.826) 200(.751)
  • 182 165 150
  • 497

26
Alternatively,
  • PV 200 (2.49)
  • 498

27
Net Present Value Model of Investment Choice
  • 1. Felt need Maximize wealth
  • 2. Problem Identification
  • a. Objective function cash flows associated
    with each alternative
  • b. Decision constraints none
  • c. Decision rule choose alternative that
    maximizes wealth
  • 3. Identify alternatives predicting (estimating)
    cash flows associated with each alternative

28
Net Present Value Model of Investment Choice
  • 4. Evaluate alternatives
  • a. Calculate PV equivalents of each cash inflow
    and cash outflow associated with each alternative
  • b. Sum the PVs of the inflows sum the PVs of
    the outflows
  • c. NPV sum of PVs of inflows minus sum of
    present value of outflows
  • 5. Choose alternative that promises the highest
    NPV!

29
Auto Replacement Problem Revisited (r 10)
  • -4,500 3,600 3,360
    3,120
  • Chevy _________________________________
  • 1 2 3
  • PVs -4,500 3,600 ( ) 3,360 ( )
    3,120 ( )
  • -4,500 3,272 2,775
    2,343
  • ?PVs -4,500 8,390
  • NPV 3,890

30
Auto Replacement Problem Revisited (r 10)
  • -4,500 3,600 3,360
    3,120
  • Chevy _________________________________
  • 1 2 3
  • PVs -4,500 3,600 (.909) 3,360 (.826)
    3,120 (.751)
  • -4,500 3,272 2,775
    2,343
  • ?PVs -4,500 8,390
  • NPV 3,890

31
  • -6,900 4,080 4,320
    4,560
  • Fiat _________________________________
  • 1 2 3
  • PVs -6,900 4,080 (.909) 4,320 (.826)
    4,560 (.751)
  • -6,900 3,709 3,568
    3,425
  • ?PVs -6,900 10,702
  • NPV 3,802
  • Decision Choose ____________
Write a Comment
User Comments (0)
About PowerShow.com