Title: Safety Critical Computer Control Systems
1Safety Critical Computer Control Systems
- Architecture and Safety in a Future Flight
Control System - A JAS 39 Gripen Case Study
- 2002-10-03
- Jan Torin Chalmers
2Outline
- Flight Control Systems, FCS, evolution 1945
1990 - Requirements and conceptual FCS for JAS 39 Gripen
- Next generation architecture of flight control
systems - Future Technology for Flight Control Systems
- Distributed Architecture Analysis
- Present conclusions
-
3Next generation architecture of flight control
systems
4Project Starting point
Study how the Flight Control System of JAS 39
Gripen should be designed with technology of year
2010 and distributed control.
Sub Projects
5(No Transcript)
6CENTRALISERAT SYSTEM (DAGENS GRIPEN)
S
Dator
Ställdon
S
Dator
Sensorer
Dator
Ställdon
S
Styrautomat
DISTRIBUERAT SYSTEM
S
Dator
Dator
Ställdon
Sensorer
Dator
Ställdon
S
Dator
7FÖRDELAR MED DISTRIBUERAD ARKITEKTUR
- Lägre utvecklingskostnad
- - Generiska byggblock som produceras i större
serier - - Digitala gränsnitt medger att en stor del av
utprovningen - kan ske hos underleverantören
- - Enklare systemintegration/systemtest
- Lägre underhållskostnad
- - Säkrare felutpekning
- Minskat antal utbytesenheter då samma nod
- passar på fler ställen
8FÖRDELAR FORTSÄTTNING
- Flexibel design
- Systemet kan uppgraderas efter hand med fler
noder utan att hårdvaran behöver omkonstrueras - Säkrare system
- Då ingen kritisk nod finns ökar systemets
skadetålighet - Den fysiska separationen mellan noder gör att fel
inte lika lätt fortplantar sig i systemet - Tillförlitligheten hos noden ökar då redundans
och felhantering kan byggas in - Färre felmoder i systemet vilket minskar
systemets komplexitet
9Future Technologyfor Flight Control Systems
- OUTLINE
- Evolution of microelectronics
- Computer Architecture
- MicroElectroMecanical Systems
- Node Technology
- Inter Node Communication
- Conclusions
10Forecasting
- I think there are a world market for about five
computers, Thomas J Watson Sr, IBM, 1943 - There are no reasons for any individuals to
have a computer in their home, Ken Olson, Dig.
Equip., 1977 - The current rate of progress cannot continue
much longer, various computer technologists,
1950 - The increase in performance of microelectronics
is doubled every 18th month, and each function is
getting cheaper Gordon Moore, Intel, 1965 - International Technology Roadmap for
Semiconductors - ITRS99
11Evolution of Commercial Microelectronics
12Special requirements in avionics
- MATURE NOT IN TECHNOLOGY FRONT AND EXPENSIVE
- High Quality Production
- Reviews
- Life time tests
- Long procure time
- Radiation
- Reviews
- Tests
- Knowledge
- Single Event Effects, SEE
- Environmental Stress
- Increased temperature range (250 Mhz
switching speed) - EMC (difficult to control the level of
interference) - Mechanical stress
For design 2010 US 3000 250 MHz 100 times more
expensive 10 times slower
13Computer Architecture Trends
Present proposals for future billion-transistor
computers Future embedded system computers
Desktop uniprocessors for technical
applications Multiprocessor servers for
transaction processing Large continuous
data-processing capability
- Harsh environment tolerance
- Low power dissipation
- Large temperature tolerance (no cooling)
- Fast task switching
14Computer on a Chip
- Custom designed high performance chip
- Super PowerPC (90 M transistors, 250 MHz) I/O
- 2 MB SRAM (12 ns), 30 MB Flash
ASIC designed special purpose chip PowerPC (130
MHz), 1 Mgates logic, 1 MB SRAM, 10 MB flash
FPGA designed special purpose chip Real-time
processor (100MHz), 50 kgates, 250 kB SRAM, 2 MB
flash
15MicroElectroMechanical Systems
- Mechanical structures, fabricated using micro
fabrication techniques developed by semiconductor
industry.
PERFORMS Sensing, actuating, regulation,
switching etc.
DISTINCTIONS FROM SEMICONDUCTOR FABRICATION
- Process MEMS in µm micro electronic in
nm MEMS wafers non-planar MEMS removing
material from both sides - Design
simulation tools - End-stage
production MEMS packaging allows interaction
with environment. µ-electronic packaging
sealing from environment.
16Intelligent sensor node
17Smart actuator node
18Inter node communication
Q1 LOWEST FAILURE RATE Q2 LOWEST COST
-Electrical connection better than optical
connection (RF connection?)
Q3 MINIMUM NUMBER OF PATHS Q4 MINIMUM
NUMBER OF CONNECTORS
-Physical broadcast-bus superior point to point
connections
Q5 CAPACITY SUFFICIENT Q6 EMC
- -Time triggered protocol superior to event
triggered - Small number of continuous signals
- Deterministic
- No jitter, known delay
19(No Transcript)
20Conclusions
- More computing to lower price, weight and power
- Distributed control with data processing in
sensors and actuators integrating MEMS in
distributed nodes - Permanent faults decrease, transient faults
increase, less hardware redundancy, more
sophisticated fault tolerance - Distributed nodes with periodic communication
over simple electrical buses - Highlighting Distribution, Dependability,
Maintainability, and Determinism
21Distributed Architecture Analysis
- OUTLINE
- Design method
- Functional layout of a Distributed FCS
- System architecture
- Fault handling
- Bus scheduling
- Results
22(No Transcript)
23(No Transcript)
24Control task graph
25Task graph with different bus allocations
Actuator nodes
sensors
Primary control surfaces
26Functional layout
27Redundant ConfigurationsCritical Failure,
Probability 1 h mission
28System Architecture
29Fault handling
30System Architecture
31Bus scheduling
32Structure of an Actuator node
33Recovery principles
Replica deterministic
Eventual Replica deterministic
- Forward recovery
- Updated actuator states from a non faulty node.
- Synchronous communication
- Synchronous tasks processing in actuator nodes
Double execution Each node has allocated memory
for two sets of states. Synchronous
communication Synchronous tasks processing in
actuator nodes
Inherent recovery Continue execution of tasks
and the faulty values will eventually converge to
the correct values. Synchronous
communication Asynchronous tasks processing in
actuator nodes
34PRESENT CONCLUSIONS
35Results
- Technology Pred. Method
- Conceptual Design Method
- Top-Down, Holistic view
- Dependability oriented
- Cost optimized
- Distributed Architecture
- Identical actuatornodes
- Multi-control
- Time triggered communication
- Semi-Synch. Fault Handling
- Synch. Communication
- Asynch. Actuator nodes
- Eventual replica determinism
- DARES
36Outcomes
- 9 Scientific Publications
- 2 Journal
- 7 Conf proceedings
- 1 Licentiate Thesis
- 7 Technical Reports
- 2 Patent Applications (swedish
international)
37Future
- Detailed Fault Handling of Sensor and Actuator
Nodes - Trade-off transient fault handling alt.
- Detail permanent reconfiguration
- Formally proof fault handling
- Define Time-Triggered Bus for Safety Critical
Appl. - Specify requirements
- Investigate commercial alt.
- Case Study for Conceptual Design Method
- Avionic system for JAS 39 Gripen
-