Jan Camenisch Nishanth Chandran Victor Shoup - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Jan Camenisch Nishanth Chandran Victor Shoup

Description:

Jan Camenisch Nishanth Chandran Victor Shoup. IBM Zurich UCLA NYU & IBM Zurich ... KeyGen(): pk = (pkkdm, pkcca, CRS); sk = skkdm. Enc(pk, m): (VK, SK) : keys for OTS ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 26
Provided by: CSU117
Category:

less

Transcript and Presenter's Notes

Title: Jan Camenisch Nishanth Chandran Victor Shoup


1
A PKE Secure Against Key Dependent Chosen
Plaintext Adaptive Chosen Ciphertext Attacks
  • Jan Camenisch Nishanth Chandran Victor
    Shoup
  • IBM Zurich UCLA
    NYU IBM Zurich

2
Public Key Encryption
Enc(pkB,m1)
pkA, skA
pkB, skB
Enc(pkA,m2)
Enc(pkB,m3)
3
Semantic Security GM82
sk
pk
b 0/1
m
Enc(pk,m) / Enc(pk,?)
b'
Adv wins if b b'
4
CCA Security NY90,RS91
pk
sk
c
Dec(sk,c)
b 0/1
poly times
m
c Enc(pk,m) / Enc(pk,?)
c ? c
poly times
Dec(sk,c)
b'
CCA1
CCA2
Adv wins if b b'
5
Encrypting Keys
Token 1
Enc(pk2, sk1)
Enc(pk1, sk2)
Token 2
PKCS 11, IBM CCA, KMIP
Enc(pk, sk)
Key Backup
Circular Encryption
6
Encrypting Keys
sk
pk
Enc(pk,sk)
Secure??
In general NO! GM84
7
Key Dependent Message (KDM) Security CL01, BRS02
pk1, pk2, ., pkn
sk1, sk2, ., skn
i, j
b 0/1
Enc(pki,skj) / Enc(pki,?)
b'
Adv wins if b b'
8
KDM Security BHHO08
pk1, pk2, ., pkn and F
sk (sk1, sk2, ., skn)
i and f in F
b 0/1
Enc(pki,f(sk)) / Enc(pki,?)
b'
Adv wins if b b'
9
Previous Constructions of KDM Secure Schemes
  • CL01, BRS02 first constructions in RO model
  • BDU08 stronger security, in RO model
  • Without RO ???
  • BHHO08 CPA secure against linear
  • functions F of keys
  • CCA security ???
  • This work CCA secure against linear
  • functions F of keys

10
Why care about KDM CCA ?
Enc(pk2, sk1)
Enc(pk1, sk2)
pk2, sk2
pk1, sk1
c, 2
Dec(c, sk2)
11
Rest of the Talk
  • KDM CCA Definition
  • Building blocks
  • KDM CPA secure scheme
  • CCA secure scheme with labels
  • NIZK proof system
  • Strong one-time signatures
  • General Construction
  • Concrete Instantiation

12
KDM CCA Security Definition
pk1,., pkn and F
(i, f)
sk (sk1,., skn)
Encryption queries
c Enc(pki,f(sk)) / Enc(pki,?)
b 0/1
(i, c) ? (i, c)
Decryption queries
Dec(ski,c)
b'
Adv wins if b b'
13
Building Blocks
  • Start with any KDM CPA secure scheme supporting
    function family F
  • General scheme to convert this to KDM CCA
    secure scheme supporting function family F
  • High level idea
  • Naor-Yung double encryption Encrypt msg with
    KDM-CPA and CCA schemes prove that same message
    was used.
  • Use labeled CCA scheme to prevent
  • malleability.

14
Labeled CCA Encryption
  • Label Public data attached non-malleably
  • to a ciphertext
  • Changing the label, changes the ciphertext
  • In our application, we will use labels to bind
    together the two ciphertexts and the NIZK proof

15
NIZK Proof System BFM88, FLS90
Statement x in L
Common Reference String
Prover P
Verifier V
Witness w
p P(CRS, x, w)
  • Completeness V(CRS, x, p) 1 if CRS, p
    generated
  • correctly and x in L
  • Soundness No P, given CRS, can output (x, p)
    s.t. x not in L and V(CRS, x, p) 1
  • Zero-knowledge No V can distinguish between
    real
  • proofs and
    simulated proofs

16
NIZK Proof System BFM88, FLS90
Statement x in L
Common Reference String
Prover P
Verifier V
Witness w
p P(CRS, x, w)
Note We do not require proof to have Simulation
Soundness Sahai99, DDOPS01
Simulation Soundness Even if P sees several
simulated proofs of false statements, he cannot
give valid proof for a new false statement
17
Strong One-Time Signatures
VK
SK
m
s SignSK(m)
(m, s)
Adv wins if (m, s) ? (m, s) and VerifyVK(m,
s) accept
18
General Construction
  • KeyGen() pk (pkkdm, pkcca, CRS) sk skkdm
  • Enc(pk, m)
  • (VK, SK) keys for OTS
  • ckdm Enckdm(pkkdm,m) ccca Enccca(pkcca,m,VK)
  • p proof that ckdm and ccca encrypt same m
  • s SignSK(ckdmcccap)
  • Output (ckdmcccapVKs)

19
General Construction
  • KeyGen() pk (pkkdm, pkcca, CRS) sk skkdm
  • Enc(pk, m) c (ckdmcccapVKs)
  • Dec(sk, c)
  • Parse c as ckdmcccapVKs . Reject if bad
    format.
  • If s is valid signature and p is valid proof,
    output Deckdm(sk, ckdm) Otherwise, reject.

20
Proof Main Points
  • Proof through a hybrid argument from encrypting
  • keys to encrypting dummy messages
  • Having only skkdm as secret key allows us to
  • combine a KDM-CPA and a regular CCA/CPA
  • scheme
  • Using a regular CCA scheme instead of CPA
  • allows us to do away with simulation
  • soundness

21
Proof Main Points
  • The label serves two purposes
  • The VK of the OTS is part of the label and
    changing the VK, changes the label and hence the
    ciphertext
  • If KDM-CPA scheme allows only encrypting
  • bits of secret key (as in BHHO08), we can
  • tie encryptions of all the bits together in
    the
  • KDM-CCA scheme using labels

22
Proof Sketch
23
Concrete Instantiation
(Decisional K-linear assumption)
G, group of prime order q
  • Generators g1, ., gK1
  • Experiment 0
  • x1, , xK 2 Zq xK1 S xi
  • Adv is given g1, ., gK1 , g1, ., gK1
  • Experiment 1
  • x1, , xK, xK1 2 Zq
  • Adv is given g1, ., gK1, g1, ., gK1

Expt. 0 or 1?
x1 xK1
x1 xK1
24
Concrete Instantiation
Building Blocks based on Decisional K-linear
assumption
  • KDM CPA scheme BHHO08
  • CCA2 scheme with labels CS02, HK07, S07
  • NIZK proofs for satisfiable systems of linear
    equations over groups GOS06, GS08
  • Strong One-Time Signatures G06

25
Thank you
Write a Comment
User Comments (0)
About PowerShow.com