Title: Transverse and elliptical flow in asymmetric systems
1Betty Tsang
The National Superconducting Cyclotron
Laboratory _at_Michigan State University
2Transverse and elliptical flow constraints the
EoS of symmetric nuclear matter.
3Relevance to dilute and dense n-rich objects
4Multifragmentation Scenario --consistent with
mixed phase
Time Dependence --Initial compression and energy
deposition -- Expansion -- Cooling -- Fragments
form (freeze-out) -- Fragments decouple
Different Approaches Dynamical (AMD,BNV) Rate
equations (EES) Equilibrium at freeze-out
density (BUU-SMM)
5Isospin mixing
P
T
P
T
6Varying isospin degree of freedom
Gain 24 ns
112Sn112Sn
124Sn124Sn
PRL, 85, 716 (2000)
7Measured Isotopic yields
Shapes are similarMore n-rich isotopes from more
n-rich systemIs Sequential decay effect isospin
independent?Isotopic effects are small how to
quantify them?
8Isoscaling from Relative Isotope Ratios
R21Y2/ Y1
Factorization of yields into p n
densities Cancellation of effects from sequential
feedings Robust observables to study isospin
effects
9Compact representation of isoscaling
10Isoscaling observed in many reactions
PRL, 86, 5023 (2001)
11R21?exp(-?SnN- ?SpZ)/T
R21?exp((-?Sn ?fn)N(-?Sp ?fp ??)Z)/T
R21?exp(-??nN- ??pZ)/T
12Origin of isoscaling
- Isoscaling disappears when the symmetry energy is
set to zero
- Provides an observable to study symmetry energy
13Role of density dependent asymmetry term-Where
do the fragments originate?-
asy-stiff (F1)
asy-soft (F3)
more symmetric dense region
neutron-rich dense region
more symmetric emitted particles
neutron-rich emitted particles
- Various models predict different dependence on
density dependence of asymmetry term. - Equilibrium models fragments originate in
interior. - EES model fragments emitted from surface.
14Expanding Emitting Source model W. Friedman
PRC42, 667 (1990)
Thermal instability at low density.
15Density dependence of asymmetry energy
Strong influence of symmetry term on fragment
isotopic ratios
?0.36 ? ?2/3 Consistent with many body
calculations with nn interactions
S(?)23.4(?/?o)?
16Symmetry Terms
Affect neutron star radii, moments of inertia,
central densities.
E(?, ?) E(?, 0)Esym(?) ?2
K(F1) 61 MeV K(F3) -69 MeV
17Sensitivity to the isospin terms in the EOS
F1 agrees with data better
PRC, C64, 051901R (2001).
18Isospin diffusion
P
T
P
T
19Iso-scaling in projectile fragmentation
- Fixed Projectile
- no diffusion a0
- aY(112124)/Y(112112)0.157
- aY(124124)/Y(124112)0.126
-
- Fixed Target
- aY(124124)/Y(112124)0.401
- aY(124112)/Y(112112)0.448
- a is target dependent
- Isospin diffusion between target and projectile
20Experimental Determination of Isospin diffusion
a? 4Csym(Z2/A2)2-(Z1/A1)2/T -- statistical
models 112112 124124 no isospin gradient, no
diffusion 124112 n-diffusion from proj. to
targ. 112124 n-diffusion from targ. to
proj. a3 (Zb/Ab)2-(Z3/A3)2/ (Za/Aa)2-(Zb/Ab)2
a4 (Z4/A4)2-(Zb/Ab)2/ (Za/Aa)2-(Zb/Ab)2 Exp
erimental results ? 3 nucleons exchange between
112 and 124 (equilibrium6 nucleons)
21Comparison with model (BUU)
a3 (Zb/Ab)2-(Za/Aa)2/ (Z3/A3)2-(Za/Aa)2 a4
(Zb/Ab)2-(Za/Aa)2/ (Zb/Ab)2-(Z4/A4)2
Diffusion determined from 2 symmetric systems
and 1 mixed system
BUU parameters determined from transverse and
elliptical flow data.
E(?, ?) E(?, 0)Esym(?) ?2
Initial results show sensitivity to isospin part
of the EOS Further work is needed
22Summary
- Density dependence of symmetry energy can be
examined experimentally. - Existence of isoscaling relations
- Conclusions from multi fragmentation work are
model dependent - SMM favors ?2 dependence of S(?).
- EES favors ?2/3 dependence of S(?).
- Isospin Diffusion from projectile fragmentation
data test the transport model parameters