PGM Permutation Group Mapping secret key cryptosystem - PowerPoint PPT Presentation

1 / 9
About This Presentation
Title:

PGM Permutation Group Mapping secret key cryptosystem

Description:

Tame if factorization can be achieved in time polynomial in n. ... If there exist transformations to covert a tame LS to a wild LS, then a public ... – PowerPoint PPT presentation

Number of Views:154
Avg rating:3.0/5.0
Slides: 10
Provided by: xzou
Category:

less

Transcript and Presenter's Notes

Title: PGM Permutation Group Mapping secret key cryptosystem


1
PGM (Permutation Group Mapping) secret key
cryptosystem
  • By Spyros Magliveras

2
Symmetric group
  • A set X of elements
  • A permutation is a bijective mapping X?X,
  • Symmetric group Sx the set of all permutations
    along with composition operation.
  • Sn when X1,2,,n.
  • Permutation group a subgroup of Sx or Sn.

3
Permutation notations and composition operation
  • Notation X1,2,3,4,5
  • Standard notation ( )
  • Cyclic notation (1 3) (2) (4 5)
  • (1 2 5) (3 4) ??( )
  • (1 3) (2) (4 5)?(1 2 5) (3 4) (1 4 )(2 5 3)

1 2 3 4 5
3 2 1 5 4
1 2 3 4 5
2 5 4 3 1
4
Logarithmic signature (LS) for permutation group
  • Let G be a finite permutation group of degree n,
    an LS for G is an ordered collection ?
  • B1 ?10, ?11, , ?1r1-1, r1 elements.
  • B2 ?20, ?21, , ?2r2-1, r2 elements.
  • Bi ?i0, ?i1, , ?iri-1, ri elements.
  • Bs ?s0, ?s1, , ?srs-1, rs elements. Note
    ?ij may not belong to G.

5
LS definition
  • For each g?G, it can be uniquely expressed as
  • g ?sts ? ?s-1ts-1 ? ? ?2t2 ? ?1t1, for some
    ?iti ? Bi.
  • Meaning of LS a concise representation for G.
  • G n rs? rs-1? ? r2 ? r1 however LS rs
    rs-1 r2 r1
  • LS ? induces a total order on G, thus a bijection
    from ZG?G.
  • Terminologies
  • Bi are called blocks of ? and
  • r(r1, r2, , rs) the type of ? and
  • lrs rs-1 r2 r1 length of ?.
  • If sgt1 and rigt1, then called non-trivial.
  • Tame if factorization can be achieved in time
    polynomial in n.
  • Supertame, if factorization can be achieved in
    O(n2).
  • Otherwise, wild.
  • Let ? the collection of all LSs of G.

6
Bijection ? induced by ?
  • r(r1, r2, , rs), define
  • m11, mi r1 ? r2 ? ? ri-1 for i2,..,s.
  • ? is bijection Zr1? Zr2? ? Zrs ? ZG as
  • ?(p1,,ps) p1m1 ps ms.
  • Then ?-1 (ZG ? Zr1? Zr2? ? Zrs ) is
    efficiently computable by successive
    subtractions.
  • Define bijection ?? Zr1? Zr2? ? Zrs ? G
  • ??(p1,,ps) ?sps ? ?s-1ps-1 ? ? ?2p2 ? ?1p1,
  • Define ZG ? G , to be ?-1??
  • is always efficiently computable, but
    is not, unless ? is tame.

-1
7
Definition of mapping
PGM cryptosystem Suppose ?, ? are a pair of tame
LSs. Define encryption as E?,?
-1
?
?
ZG?G?ZG, so ZG?ZG.
Define the corresponding decryption
as D?,?E?,?-1E?,?
-1
?
?
8
PGM example A5 of order 60
  • Encryption of 49
  • 494054
  • ?-1(4,1,2)
  • ???(4,1,2)
  • (1)(2)(354)?(1)(23)(45)?(15432)
  • (154)(2)(3) (i.e., )
  • 4. Let (154)(2)(3) ?3p3??2p2??1p1
  • 5. Then ?1p1 (1 5 3 4 2) so
  • p14 and p14m14.
  • 6. ?3p3??2p2(154)(2)(3)? ?14-1
  • (154)(2)(3)?(12435)(1)(24)(35).
  • 7. Then ?2p2(1)(243)(5) so
  • p22 and p22m210.
  • 8. ?3p3(1)(24)(35)??22-1
  • (1)(24)(35)?(1)(234)(5)
  • (1)(2)(354), so
  • p31 and p32m320.
  • 9. So 2010434.
  • 10. i.e., E?,?(49)34.

?
?
pijmi
(1 4 2 3 5) (1)(2)(3 5 4) (1 2 5 4 3) (1 3)(2
4)(5) (1 5 3 4 2)
0 1 2 3 4
(1)(2)(3)(4)(5) (1 2 3 4 5) (1 3 5 2 4) (1 4 2 5
3) (1 5 4 3 2)
r15
?1p1
4
(1)(2)(3)(4)(5) (1)(2 3)(4 5) (1)(2 4 3)(5) (1)(2
5 3)(4)
(1)(2 3)(4 5) (1)(2 5 3)(4) (1)(2 4
3)(5) (1)(2)(3)(4)(5)
0 5 10 15
5
r24
?2p2
0 20 40
(1)(2)(3)(4)(5) (1)(2)(3 4 5) (1)(2)(3 5 4)
(1)(2)(3)(4)(5) (1)(2)(3 5 4) (1)(2)(3 4 5)
r33
?3p3
40
m11, m25, m320
9
Discussion on PGM
  • Efficient, in particular for parallel
    implementation
  • More flexible than DES
  • If there exist transformations to covert a tame
    LS to a wild LS, then a public key cryptosystem
    can be built. How??

Select a tame LS ?tame, transform it to a wild
one ?, select another tame LS ?, Then ?, ? are
public key and ?tame are private key.
Write a Comment
User Comments (0)
About PowerShow.com