Title: Sasha%20Novokhatski
1Linac possibilities for a Super-B
- Sasha Novokhatski
- SLAC, Stanford University
- WG2 - Linac/RF, Positron Source,
Injection/Extraction - March 17, 2006
2Long history of electron-positron colliders
Go to Google and find hundreds of projects
A.M.Budker, International High Energy Physics
Conference, Kiev, Russia, 1970 Ugo Amaldi,1978
3Linearly colliding Super-B Factory layout
Why linear collider scheme? We believe that
luminosity in single collisions can be higher and
we can cool the beams to smaller emittance in the
damping ring
4Possible limitation for damping ring energy
Space charge problem in the TESLA Damping
Ring W.Decking, R.Brinkmann, EPAC2000 At
lower energies (lt 3 GeV) the space-charge can
lead to emittance growth, and potentially to
particle loss. The space charge tune shift may be
noticeable. Estimation for round beams
Maximum gradient of the force
Flat beams
5Space charge tune shift
Incoherent tune shift
Better to go to higher energy in damping ring
6Linear Super B (may be the cheapest option)
IP
4 GeV e- SC linac
Bunch compressor
e- Gun
Positron target
Decompressor monochromator
1GeV e linac
1GeV eDR
6 GeV e SC linac without klystrons
e- Dump
7GeV e DR
7Damping Ring
- Energy 7GeV
- Beam current 1.6E-8 / 2.1E-97.6A
- Circumference 100000.63m6.3km
- Damping time 8.3msec
- Injection/ejection by mini trains of 1000 bunches
with frequency of 1.2 kHz - RF power 2.2MeV7.616.7 MW HOMs(10)Resistive
wall - Collision time structure
8.3 msec
2.1nsec10002.1 msec
8Accelerator Physics Issues
- Electron gun
- Beam transfer lines
- Buncher (compressor)
- Debuncher-Monochromator
- HOM loads
- Beam Loss
- Single-bunch instability
- Adiabatic anti-damping
- Multi-bunch Instabilities
- Two beams of different energies must remain
confined in the same focusing channel (not so
difficult in linacs)
9Linac 4 GeV is a TESLA-type linac, with higher
repetition rate
TESLA Linear Collider
10Wake fields in Tesla cavities
0.2 mm bunch Wake potential in the last cell
11Accelerating gradient and HOM power loss
12Preliminary Super-B Factory parameters
Collision parameters
Linacs parameters
Parameter LEB HEB
Beam Energy (GeV) 4 7
Number of bunches 10000 10000
Collision freq/bunch (Hz) 120 120
IP energy spread (MeV) 5 7
Particles /bunch x 1010 10 10
Time between collisions (msec) 8.3 8.3
by (mm) 0.5 0.5
bx (mm) 22 22
Emittance (x/y) (nm) 0.7/0.0016 0.7/0.0016
sz (mm) 0.35 0.35
Lumi enchancement Hd 1.07 1.07
Crossing angle(mrad) 0 0
IP Horiz. size (mm) 4 4
IP Vert. size (mm) 0.028 0.028
Horizontal disruption 1.7 0.9
Vertical disruption 244 127
Luminosity (x1034/cm2/s) 100 100
Parameter LEB HEB
Linac Energy GeV 4 61
Number of bunches per cycle 101000 1010
Repetition rate Hz 1200 1200
Final energy spread MeV 5 7
Particles /bunch x 1010 10 1
Bunch spacing nsec 2.1 2.1
RF Frequency MHz 1428 1428
Norm. Emittance (x/y) mmmrad 5.48/0.0125 9.59/0.022
Bunch length at injection mm 1 3
Final bunch length sz mm 0.35 3
Accelerating gradient MV/m 20 20
Accelerator length m 200 300
Energy spread after collision MeV 15 15
Average current mA 19.2 0.19
Energy recovery efficiency n/a 95
RF power (40 efficiency) MW 192 0
Relative particle loss 1/sec n/a 0.001